
AFRL-IF-RS-TR-1999-236
Final Technical Report
October 1999

SURVIVABILITY IN OBJECT SERVICE
ARCHITECTURES (OSA)

Object Services and Consulting, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E292

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20000110 070
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

© 1999 Object Services and Consulting, Inc. All Rights Reserved.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

OTIC QUALITY JmeWSED 4

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-236 has been reviewed and is approved for publication.

APPROVED:
PATRICK M. HURLEY
Project Engineer

FOR THE DIRECTOR:
WARREN H. DEBANY, Jr., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

SURVIVABILITY IN OBJECT SERVICE ARCHITECTURES

David Wells
Steve Ford

David Langworthy
Thomas Bannon

Nancy Wells
Venu Vasudevan

Contractor: Object Services and Consulting, Inc.
Contract Number: F30602-96-C-0330
Effective Date of Contract: 01 July 1996
Contract Expiration Date: 31 May 1999
Short Title of Work: Survivability in Object Service Architectures

Period of Work Covered: Jul 96 - May 99

Principal Investigator: David Wells
Phone: (410)318-8938

AFRL Project Engineer: Patrick Hurley
Phone: (315)330-3624

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Patrick Hurley, AFRL/IFGA, 525 Brooks Rd, Rome, NY.

REPORT DOCUMENTATION PAGE
FormAppiwed

OMB No. 0704-01BB

1. AGENCY USE ONLY Heave blank) 2. REPORT DATE

Oct99

3. REPORT TYPE AND DATES UUVtHtu

Final M 96-May 99

4. TITLE AND SUBTITLE

SURVIV ABILITY IN OBJECT SERVICE ARCHITECTURES (OSA)

6. AUTHOR(S) „ XT „, .. .
David Wells, Steve Ford, David Langworthy, Thomas Bannon, Nancy Wells and

Venu Vasudevan

5. FUNDING NUMBERS
C - F30602-96-C-0330
PE -62301E
PR -E017
TA -01
WU - 07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRtSSItS)

Object Services and Consulting, Inc.
6111 Baywood Ave.
Baltimore, MD 21209-3803

9. SPONSORINGIMONITORING AGENCY NAMEISI AND ADDRESSIES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

AFRL/IFGA
525 Brooks Rd
Rome, NY 13441-4505

Defense Advanced Research
Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-236

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Patrick M. Hurley, IFGA, 315-330-3624

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

ease of construction that characterizes OSA-based applications.

Co™ Sect Request Broker Architecture (CORBA), Distributed Information Systems

(DIS), Object Services Architecture (OSA)

15. NUMBER OF PAGES
176

"17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

"18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298'(Rev. 2-891 Ifclil
PtuctM by »HS Std. 238.18 _ .,
oS~diM| f«f m Pre. WHSTOIOR. Ocl 94

TABLE OF CONTENTS

Executive Summary : 1

Problem Statement 2

Objective 2

Approach

Technical Results 3

Technology Transition Accomplishments 6

CDRLLog 7

Lessons Learned °

Conclusions

A-l Survivability in OSA Architectures-1997 13

A-2 Composition Model for Object Services Architectures - 1997 22

A-3 Evolution Model for Object Services Architecture - 1997 56

A-4 OSA Survivability Service-1998 73

A-5QoS& Survivability-1998 96

A-6 Notes on a Command Post Scenario-1998 113

A-7 Survivability is Utility -1998 I25

A-8 Estimating Service Failure -1999 135

Executive Summary

The military of the future will increasingly rely upon "information superiority" to
dominate the battlespace. The size and complexity of the software systems necessary to
achieve this goal makes them highly vulnerable to the loss or degradation of hosts,
networks, or processes due to physical and information warfare attacks, hardware and
infrastructure failures, and software errors.

This report summarizes the goals and results of a project that developed an architecture
and software mechanisms to make military and commercial software applications based
on the popular Object Services Architecture (e.g., OMG's CORBA) model far more
survivable than is currently possible, while at the same time maintaining the flexibility
and ease of construction that characterizes OSA-based applications.

Problem Statement
The military of the future will increasingly rely upon "information superiority" to
dominate the battlespace. Achieving information superiority will require software
applications that are far larger, far more complex, and far more distributed than
comparable applications in existence today. The size and complexity of such systems
makes them highly vulnerable to the loss or degradation of hosts, networks, or processes
due to physical and information warfare attacks, hardware and infrastructure failures, and
software errors. Since loss or degradation is inevitable, it is essential that such systems
behave well when this occurs. A system that can repair itself or degrade gracefully to
preserve as much critical functionality as possible in the face of attacks and failures is
called a survivable system.

Objective
This project has developed software mechanisms to ensure the survivability of such
systems that go well beyond the traditional approaches of fault tolerance and replicated
services. Those techniques, while valuable, are in themselves insufficient to respond to
the full range of problems that can face a system since they create "islands of availability"
but do nothing to address system-wide concerns. The following two examples illustrate
the kinds of issues addressed by our survivability work.

Mission planning for a sortie in regional conflict with multiple coalition partners requires
many resources, among them a map server. Assume the local map server becomes
unavailable and that the backup map server is located at a remote location and reachable
only over slow communication lines. There is a coalition map server available with good
performance characteristics, but its data is considered to be of lower quality and the labels
are specified in a foreign language. Under many circumstances, it would be desirable to
use the coalition map server, but existing systems cannot switch an active connection and
are limited to exact substitutes for a service. A survivable system needs to be able to
switch compatible services in an established connection and substitute acceptable
alternatives.

The ability to substitute services is only one aspect of survivability. Consider an
information warfare attack focused on NT machines. As the NT machines begin to fail,
essential processing must be moved over to UNIX machines. This in turn requires
terminating or delaying non essential processing on those machines. However, there are
many different threats, each with its own optimal response, and more than one threat may
materialize at the same time. Addressing this in an ad hoc manner is not possible. A
survivable system must be able to dynamically adapt to the threats in its environment to
reallocate essential processing to the most robust resources.

Approach
This project is developing software mechanisms to make military and commercial
software applications based on the popular Object Services Architecture (e.g., OMG's
CORBA) model far more survivable than is currently possible, while at the same time
maintaining the flexibility and ease of construction that characterizes OSA-based

applications.

The keys to making systems survivable are:

- design patterns with well designed "joints" between components to make
reconfiguration possible

- monitors to detect when failure or degradation has occurred

- models of client needs and resource capabilities to allow alternate configurations to be

found
- multiple reconfiguration strategies with different "goodness" characteristics

applicable in different situations

- the ability to select and execute a good reconfiguration strategy that attempts to satisfy
application requirements, make good

- use of resources, and avoid vulnerable configurations

We have developed a comprehensive approach to satisfying these requirements consisting
of: a survivable object abstraction in which survivable services and applications can be
developed; a collection of models describing capabilities, needs, and threats; and the
architecture of a Survivability Service that manages the survival of systems constructed in
accordance with the survivable object abstraction. Our goal was to demonstrate the
feasibility of this approach by building and demonstrating a prototype Survivability
Service consisting of all of the above capabilities except monitoring, which we assume
will be developed elsewhere. To maximize the utility of the Survivability Service, we
leveraged related work such as fault tolerance techniques, OMG CORBA & Object
Services, failure detectors, and various system models. We have proposed the
Survivability Service specification to the Object Management Group and plan to make
the prototype available as a reference implementation.

Technical Results
All reports listed below are included in the Appendix to this document and are publicly
available on our project Website at:

http://www.objs.com/Survivabilitv/index.html

Documents

Survivability in OSA Architectures - 1997

This report describes the goals, approach, and anticipated results of the project
"Survivability in Object Services Architectures". It also introduces a collection of other
reports produced on the project.

Composition Model for Object Services Architectures -1997

This report describes the static properties of a survivable object abstraction that extends
standard object models in several ways to allow objects and applications to be
reconfigured to recover from or protect against failures. Survivable objects are the basis
for constructing survivable applications.

Evolution Model for Object Services Architectures -1997

This report describes the dynamic properties of the survivable object abstraction
(introduced in OSA Composition Model) that it possible to safely migrate a running
application from one legitimate configuration into another legitimate configuration. Both
semantically identical and semantically similar transformations are possible under this
model, which allows applications to continue to survive in degraded mode when system
resources become unavailable due to attack or failure.

OSA Survivability Service -1998

This report describes the architecture of a Survivability Service that manages survivable
objects and applications constructed using the survivable object abstraction. The
Survivability Service is compatible with existing work in failure detection and
classification, fault tolerance, and highly available systems. Portions of the Survivability
Service are being prototyped as part of this project.

OoS & Survivability -1998

This report describes recent research in service-level quality of service and the
relationship between survivability and quality of service.

Notes on a Command Post Scenario -1998

This report is a working paper describing the likely software environment of a future
military command post, the connectivity between a command post and its outside
environment, and a typical activity that takes place within the command post. This will
be used to derive the survivability requirements of a command post and define a scenario
for demonstrating the Survivability Service.

Survivability is Utility -1998

This report explores how Utility Theory (a sub-discipline of microeconomics) can be
exploited to define metrics to evaluate the successfulness of survivable systems and can
be used by Survivability Management Systems to plan actions to ensure system
survivability.

Estimating Service Failure -1999

In the process of creating and maintaining survivable configurations, the Survivability
Service needs to predict the likelihood that, within some time interval, a service will be
damaged to an extent that it cannot provide the required level of service. This paper

discusses a basic model of how services are provided by resources, how threats against
those services are modeled, and how the probability of service failure is computed from

the threat model.

Software - OSA Survivability Toolkit
The OSA Survivability Toolkit is a collection of mechanisms that implement some of the
capabilities defined for the Survivability Service. In the current release, the following
components have been implemented.

DR.TSMarketv2.0 -April 1999

The Survivability Service takes a market-based approach to resource allocation when
constructing survivable configurations and when reconfiguring in response to negative
events such as resource failure or degradation, positive events such as resources coming
back on line, or neutral events such as a change in workload or the relative priority of

activities.

OBJS Rebindinf* Mechanism vl.O - April 1999

The OBJS Object Service Rebinding Mechanism vl.O is a sample implementation of a
mechanism to switch the binding of a CORBA (Orbix) client from one server to another,
without any action on the part of the client or server, and while the client and servers
remain running. This mechanism was developed to facilitate the real-time rebinding of
clients and servers in CORBA-based software systems in which it was detected or
suspected that switching servers on the fly might improve the overall survivability of the
system. For instance, the machine on which a specific server is running might be under
attack, or the specific implementation of the server might have become vulnerable to

attack.

Survivability Desk vl.O - April 1999

The Survivability Desk is the User Interface through which a system administrator
interacts with a Survivability Service. The Survivability Desk provides a view of system
status and is the primary way in which the models used by the Survivability Service are

populated and modified.

ORTS Ensemble vO.50 - May 1999

Ensemble is Cornell's distributed communication system. Its Maestro Interoperability
Tools provide support for Service Replication in the OBJS Survivability Toolkit by
enabling CORBA (Orbix) clients to access Maestro group objects via HOP. This, when
combined with the OBJS Rebinding Mechanism, can provide the means the OBJS Market
needs to control service replication, rebinding, and migration in the interest of improving
system survivability. This port of the Maestro Interoperability Tools to Windows NT was
done in the interest of supporting replicated services across platform types.

Survivability Demonstrations
The survivability mechanisms are demonstrated in three independent demonstrations:

• Replica Allocation via Market Mechanisms and Threat Models in the Presence of
Failures. A videotape, Survivability Demonstration, illustrates the use of a market
and a threat model to allocate service replicas in a simulation of an environment
consisting of a small, homogenous collection of hosts. Replicas are positioned to
minimize the risk of simultaneous failure of all replicas implementing a service.
When individual replicas fail, the system automatically rebalances. The need for the
market to consider correlated failures is illustrated by an example in which a brittle
allocation is made when correlation is ignored. Also illustrated is the ability of the
market to dynamically reallocate resources when the relative priority of the services
changes as a result of changed user requirements.

• Command Post Scenario. Market-based resource allocation is illustrated by a
demonstration included in the software release OBJS Survivability Desk vl.O. The
demonstration allocates a variety of services in a semi-realistic model of a fictitious
command post. A description of the expected structure and operational requirements
of such a command post are described in Notes on a Command Post Scenario. This
demonstration exercises the Survivability Service market and modeling capabilities in
a realistic setting, while at the same time eliminating extraneous factors irrelevant to
project goals. The demonstration is canned, in the sense that user feedback to affect
the course of the demonstration is not possible, although the viewer may browse the
underlying system and threat models to obtain a detailed view of market activity.

• Dynamic Service Rebinding. The ability to dynamically rebind running clients and
services without the cooperation or knowledge of either client or server is illustrated
by a demonstration included with the OBJS Rebinding Mechanism vl.O. Service
rebinding is an essential component of any survivability strategy, since it enables the
reconfiguration of services and applications from an entity, a Survivability Service,
outside of the monitored application.

Technology Transition Accomplishments

Object Management Group

Reports documenting the survivable object abstraction (OSA Composition Model and
OSA Evolution Model) and the design of a Object Survivability Service (OSA
Survivability Service) were submitted to the Object management Group (OMG) per
contract requirements. These documents have OMG tracking numbers:

• internet/99-04-03: OSA Survivability Service
Formats: ASCII, RTF, PostScript, PDF, Word

• internet/99-04-02: Evolution Model for Object Services Architecture
Formats: ASCII, RTF, PDF, Word, PostScript

• internet/99-04-01: Composition Model for Object Services Architecture
Formats: ASCII, RTF, PostScript, PDF, Word

A search of the OMG documents fhttp://www.omp.orp/cgi-bin/doclist.pl) list indicates
that no alternate approaches to survivability have been presented to OMG.

Preliminary results of the project were presented to the OMG Security SIG at an OMG
meeting in June, 1998.

Papers
A paper based on our survivability metrics has been solicited by the editorial board of the
nnD Software Tech News for an issue on software testing. This paper will be completed
after the term of this contract, but is based on results obtained during the period of the
contract.

Project Website
All project reports are publicly accessible at our project Website at:

http://www.objs.com/Survivabilitv/index.html

Presentations
The project results have been presented at the following workshops and meetings. Copies
of the overheads used appear on our Website and were distributed at the meetings.

• Formal Methods Workshop (1996) - DARPA Formal Methods Workshop, Lake
Placid, NY, July 1996.

• Rome Lab Technical Exchange (1996) - Rome Laboratory C3AB Technical
Exchange Meeting, Utica, NY, December 1996.

• Wrapper Workshop (1997) - DARPA Wrapper Workshop, Lake Tahoe, CA, July
1997.

• Rome Lab Technical Exchange (1997) - Rome Laboratory C3AB Technical
Exchange Meeting, Utica, NY, December 1997.

• OMG SecSIG (1998) - Object Management Group Security SIG Orlando, FL,
June 1998.

CDRL Log
• AOOl - Monthly Progress Reports #1 - #30

• A002 - Monthly DD1586 & Quarterly Financial Graphics

• A003 - Annual Report - submitted to government in 1997

• A004 - Composition Model for Obre" Services Architecture - submitted to
government in 1997 & to the Object Management Group (OMG tracking #
internet/99-040-01) Also Appendix A-2

• A005 - Evolution Model for Object Services Architecture - submitted to
government in 1997 & to the Object Management Group (OMG tracking #
internet/99-040-02) Also Appendix A-3

• A006 - OSA Survivability Service - submitted to government in 1997 & to the
Object Management Group (OMG tracking # internet/99-040-03) Also Appendix
A-4

• A007 - Presentation Material for Annual Review - submitted at Review

• A008 - Presentation Material for Rome Tech Exchange Meetings - submitted at
meetings and attached as appendices to following month's Monthly Progress
Reports

• A009 - Software User Manuals for OSA Survivability Toolkit: Installation and
User's Manual: OBJS Rebindine Service - vl.O. Installation and User's Manual:
Survivability Service Market - v2.0. Installation and User's Manual: Survivability
Desk-vl.O. and Installation and User's Manual for OBJS Ensemble v0.50 -
submitted to the government 1999

• A010 - COTS Software Manuals - No COTS software is being delivered under
this contract.

• A011 - Final Report (this document)

Lessons Learned

Emergent Survivability Appears Feasible

While considerable work remains to prove that our initial hypothesis that achieving
emergent survivability as a system property was correct, we have demonstrated that
several of the necessary ingredients are possible and have not yet hit any critical
roadblocks. The survivable object abstraction and survivability architecture we
developed were enthusiastically received when presented at workshops attended by other
DARPA funded researchers and were considered to be a viable framework. Our
successful use of a market to allocate resources for survivability based on a threat model
is encouraging, since markets are already well known to be a good way to allocate
resources without introducing choke points or requiring excessive centralized
organization or design. We have implemented or adapted several of the mechanisms
required by the design and the remaining mechanisms do not appear to pose any
conceptual difficulties. Our projection of trends in Trading and Failure/Intrusion
Detection were accurate enough that we are convinced that our design is compatible with
developments elsewhere. Our analysis of trends in software Replication were also in the
right direction, although that field has not matured as fast as we had expected (see below).
Thus, we are convinced that we are heading in the right direction and that usable results
are within reach.

Early Scenarios and Scenario Sharing

Our coding efforts were most successful after we were able to scope the development
through a semi-realistic scenario. The Survivability Service as designed applies a large
number of survivability strategies; a far larger number than can reasonably be
implemented in a project of this size. A scenario allowed us to focus on only those
techniques required for that scenario. The existence of the scenario also was very useful
in debugging and tuning the market behavior, since it is far easier to see that the system is
behaving "reasonably" when viewed from the macro level of the scenario than from the
micro level of the market decisions.
Developing such a scenario took a long time. It would have been very helpful if research
teams were to share their scenarios, even if the scenarios shared are not directly
applicable to the needs of other teams. The DARPA-funded Intrusion Detection work
that is constructing and making available synthetic message traffic for a fictitious Air
Force base is a good example of this; while it is not directly applicable to survivability, it
at least provides a reasonable mix of services running in a reasonable network. It would
be far easier to expand this base to also cover survivability than to construct a scenario
from scratch. Another advantage of shared scenarios would be to make it easier to
combine technologies, since solutions would be addressing a common model and running
in a common environment. It would not solve the problem completely, but would make it
easier.
Common scenarios are becoming fairly common in ISO projects, but ITO projects could
benefit from them as well. This is especially true when the smaller budgets of ITO
projects are considered. With these smaller budgets, developing a scenario consumes a
higher proportion of project resources. Also, because ITO projects are typically further
from the end user, this development is fundamentally harder due to lack of domain
knowledge. We did not adequately budget for scenario development.

Demonstrating Survivability With Intermediate Results is Hard

Survivability is achieved through an amalgam of a large number of techniques rather than
a single "silver bullet". Many of these (e.g., failure detection) were outside the scope of
this project, while others, although within the technology scope, could not be
implemented without a much larger project. Until a critical mass of technology is
developed or acquired, a comprehensive and convincing demonstration of survivability is
not possible. A truly interesting demonstration requires the construction of a large
number of independent, relatively uninteresting pieces of technology. Thus, getting to a
complete intermediate state having intrinsic value for others is very difficult. We suspect
that this is a common problem with large software engineering R&D projects in which a
new field must be both defined and implemented. A challenge, that we feel we did not
identify until very late and thus did not adequately meet, is how to design for a large goal
(survivability) while at the same time defining inherently useful intermediate waypoints
that are demonstrable and useful should work stop at any of those points. Earlier access
to a significant scenario would possibly have gone a long way toward defining these
intermediate points (see above).

Using Research Quality Software

We attempted to import replication software, based on our assumption from the longevity
of the field, the quantity of published papers, and the (comparatively) large number of
systems that have been built that we would be better off importing than building. We
went down several paths in trying to incorporate replication. None of them was entirely
successful, due either to licensing issues (see below) or the immaturity of the software.
The main problems with the software we tried to use were: narrow-path development in
which a concept was proven sufficiently to meet limited project goals but not for wider
use, failure to keep the software up to date with the evolution of its software environment
(e.g., failure to upgrade to CORBA 2.0), and lack of source code that could be analyzed
and modified as needed. Version compatibility when using prototype software is a big
issue because there is little incentive for the developers to keep the software current; it is
not a commercial product and there is no research value in maintaining currency.
However, this makes promising looking software rapidly useless as a platform for further
development and is a prime cause of projects reinventing software that should be able to
be reused. It might be a good idea for DARPA (or someone) to put aside money to
improve, port, and maintain selected prototype software for community use. While an
initial expense, this might reduce overall costs by reducing the temptation to reimplement
in order to have control over code.

Licensing Issues

The more mature replication systems (Isis and systems which rely upon it) became
unavailable when Isis' eventual owner withdrew it as a product from the market. Its free
predecessor had been withdrawn earlier. This forced us to use less mature software,
which introduced its own issues (above).

Conclusions
We feel that the project was quite successful, although we did not get as far as we had
hoped. We are quite satisfied with our survivable object abstraction, both in its
capabilities and the fact that it is compatible with the major trends in object service
technology such as CORBA and Active-X and with much of what is going on in the Java
and agents worlds as well. We are also satisfied with our architecture for a Survivability
Service and feel that it has a future within the OMG if properly championed. Our use of a
combination of predictive threat models and market-based resource allocation is unique
to our knowledge; projections of future behavior combined with the ability to rapidly
reconfigure are essential to any survivability strategy. We had expected to integrate the
components of the Survivability Toolkit into a more comprehensive demonstration, but
the unexpectedly large effort involved in selecting a replication mechanism and getting it
to work preclude this. The components implemented demonstrate the key ideas and serve
as a good basis for future development, but are not ready for "prime time".

A number of open issues were identified and three proposals to continue the work were
submitted to DARPA: Survivability in AITS. Sensitivity Analysis of Self-Adaptive

10

s^uw: anH Survivahilitv Achieved Via Electronic Markets (SAVEM). The main issues

are:
» The use of resource, service, and threat models to predict the robustness and (future)

utility of a configuration appears necessary to any survivability planning. However,
such models are necessarily "noisy" due to a number of unavoidable modeling errors,
including ambiguity and delays in detecting and reporting failures/attacks, uncertainty
as to the frequency and severity of attacks and failures, and the difficulty in modeling
the statistical properties of sophisticated attacks that can be launched when desired in
a way to cause the greatest harm. Additional work needs to be done to more
accurately model and measure the kinds of errors to which the models are subject, and
to determine whether good resource allocation decisions can be made in the presence
of such errors or whether the noise overwhelms the decision process. This involves
theoretical work to model the noise and pragmatic work to measure behavior in a real

system.

• The various models must be partitioned in some way to provide information where it
is needed without creating a global choke point that would both degrade performance
and provide a tempting target for attack. However, in order to make use of remote
resources, some knowledge of the properties of these resources is required. The issue
is complicated (or perhaps simplified) by the fact that other partitionings exist. These
partitionings may represent ownership, communications, or security (among others).
Existing partitions must be respected. Particularly interesting are security partitions
that define information boundaries. Threat and resource models are an important
form of information. It is difficult to imaging a security administrator being willing to
allow information about his system's vulnerabilities flow outside of the security
domain, even if to do so is necessary in order to construct optimally survivable
systems. Architectural and modeling issues remain in this area, which can best be
explored in the context of adding survivability to a larger system.

• Survivability and quality of service are in a sense duals, since both are attempting to
provide client processes with the services they need. The two fields approach the
problem from different directions: QoS is primarily concerned with accurately
specifying what it takes to satisfy a client's needs and then providing techniques to
meet those goals, while survivability concerns itself with models and techniques to
meet some set of "utility" goals over the long term. Clearly both are necessary. Jhc
current state of the art is that neither discipline has a good solution to its "minor"
component. Merging these two technology threads would be advantageous to both.

It also appears that much of our survivability modeling based on threat models could be
applied to other areas than software survivability. For example, logistics planning
software could be made more survivable, but the logistics plans themselves could be
made more survivable by the application of some of the threat model based techniques we

developed.
We are still pursuing funding to continue this work, particularly its insertion into the
DARPA Information Assurance program. Continuation of this work is critical to the

11

success of componentware and is not being addressed elsewhere: neither the Java nor
OMG communities are doing this kind of work.

12

Appendix A-l

Survivability
in

Object Services Architectures

David L. Wells, David E. Langworthy, Thomas J. Bannon

Object Services and Consulting, Inc.

Dallas, TX

{wells, del, bannon}@objs.com

September 1997

Abstract

This report describes the goals, approach, and anticipated results of the project
"Survivability in Object Services Architectures". It also introduces a collection of other
reports produced on the project.

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory
under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Copyright 1997 1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided
this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of

the information in this document.

13

Appendix A-l

Table of Contents
1. Introduction 15

2. Project Goals 15

3. Expected Results 17

4. Technical Approach 17

4.1. Survivability Architecture 18

4.2. Models 19

4.3. OSA Hooks 19

5. Project Documents 20

14

Appendix A-l

1. Introduction
As mission critical software applications become larger and increasingly geographically
distributed, the frequency of loss or degradation of parts of the system due to physical or
information warfare attacks, hardware or infrastructure failures, or software errors
increases dramatically. At the same time, the complexity of such systems and the need to
rapidly adapt them to changing real-world requirements renders inadequate many of the
traditional means of making software robust.
This report gives a technical overview of a DARPA funded, Rome Laboratory
administered project entitled Survivability in Object Services Architectures being
executed by Object Services and Consulting, Inc., that is developing software models and
mechanisms to address this problem. As of September, 1997, the project is about one
year old, with a bit over one more year to run.
The paper is organized as follows. Sections 2-3 summarize the project's goals and
anticipated results. Section 4 summarizes our technical approach. Section 5 lists other
documents containing additional technical detail.

2. Project Goals

This project has three related top-level goals:
• to make military and commercial software applications based on the popular Object

Services Architecture (OSA) model far more able to survive failure and attack than is
currently possible,

• to make the development and use of survivable OSA-based applications tractable and
cost-effective, and

• to scale to collections of numerous, large, independently developed applications
running in the same computing and networking environment.

The second and third goals complement the first. If the development of survivable
applications is too difficult, they will never be built, rendering moot the power of the
survivability mechanisms. The need to scale is obvious. The need to address
independently developed applications competing for resources reflects the reality of a
world in which dedicated resources and tightly coupled, closed systems are rapidly giving
way to shared resources and loosely coupled systems, often constructed at least partially
from commercial off-the-shelf (COTS) or pre-existing (GOTS) software.

We restrict our attention to OSAs because unlike more general ways to construct
applications, the OSA model and implementation (collections of object services
interacting locally or remotely over an object bus) are clean enough that extensions are
tractable. At the same time, OSAs are very powerful and are used increasingly within
DOD and commercially. The two best known examples of OSAs are the Object
Management Group (OMG) Common Object Request Broker (CORBA) and Microsoft
Active-X.
Our three goals are discussed further below.

15

Appendix A-l

Survivable OSA Applications and Services: Robust applications must be able to
survive software, hardware, and network failures and degradation. For applications to
survive, it must be possible to reconfigure them as resources fail. When possible, the
reconfiguration should maintain complete functionality and performance, but if the
resource loss becomes too severe it must be possible to gracefully degrade the
application(s)' capabilities to make best use of the remaining resources. Reorganization
must be situational since different real-world situations place different valuations on
application functionality. This requires mediating between conflicting demands for
resources as the resource pool diminishes. Naturally, the survivability mechanisms
themselves must be stable and not introduce additional points of weakness.

Cost Effective Use and Development: To make the development of survivable OSA-
based applications tractable and cost-effective, our solution must reuse or adapt key
existing software infrastructure, keep development simple, and be widely applicable. The
software infrastructure to be reused comes primarily from two main areas: the OSA
domain itself (development tools, ORBs, object repositories, and object services), and the
combined domains of fault tolerance, high availability services, failure/attack detectors,
and system monitors. The straightforwardness of OSA application development is largely
responsible for the popularity of the model and must be preserved by our solution; i.e.,
development should remain approximately the same as it is now and complex
specifications or nonstandard development tools should not be required. To achieve this,
we make survivability orthogonal to conventional OSA application semantics; in other
words survivability is "added" to an application rather than built into it from the start1.
To ensure that the solution is widely applicable, we plan to make our specifications and
prototype survivability tools publicly available, and work through the Object
Management Group (OMG) to place our specifications and prototypes into their standards
process.

Scaling and Independence of Development: Individual applications or services should
not be responsible for the details of ensuring their own survivability since this is generally
hard to program, does not amortize the cost of developing the survivability mechanisms,
may conflict with other applications'or services'needs, and requires a more accurate
knowledge of the eventual deployment environment(s) than is reasonable to expect at
development time. This argues for survivability being provided by a "Survivability
Service" that handles the survivability needs of applications collectively, responding to
changes in workload, resource requirements, resource availability, and threats based on a
number of models that can be specified independently. The models can be at various
levels of fidelity, with higher fidelity resulting in better ability to survive. If an
application's or service's requirements are not specified, the application/service will be
unaffected by the existence of the Survivability Service, satisfying the goal of minimal
impact. This approach supports the goal of development simplicity. A consequence of
making survivability orthogonal to application functionality is that changing the models

1 While this may sound unrealistic, examples of adding behavior to applications with few modifications
exist, notably object-oriented databases which add persistence orthogonally to programming language
structures.

16

Appendix A-l

(not the applications or services) allows applications to be deployed into dynamically
changing or unanticipated environments.

3. Expected Results
Results of several kinds are expected from this project. In an effort of this size, a
complete solution to such a complex problem, supported by robust software, is not
possible. We have chosen to concentrate on providing the following types of results:

• Models. The key to constructing survivable systems is to configure them in such a
way that they can be easily reconfigured when needed to survive loss of system
resources. We are extending and clarifying the standard OSA model to define
"survivable configurations" as ones that are able to withstand component loss and are
also capable of being systematically evolved into new configurations should
component loss become severe. The models specify how to change both the physical
configuration (different service placement or resource allocation) and the logical
configuration (service alternatives or changed levels of service quality).

• Architecture Specification. We are developing a specification for the architecture of
a Survivability Service that implements the models described above. The architecture
is compatible with existing OSAs and projected trends and encompasses a wide
variety of existing research in fault tolerant systems, failure detectors, system models,
etc. We concentrated initially on providing an overall architecture for the
Survivability Service that covers the "big picture" of how the components relate. This
includes an internal partitioning that allows major subsystems to be replaced or
refined, possibly by third parties. Of considerably less importance, at least in the
early stages, will be detailed interface descriptions (both the Survivability Service's
API and its internal interfaces) since changes to these will have limited scope and are
likely to evolve as development progresses and other development projects are
integrated. We also plan to convert the specification to standard Object Management
Group (OMG) format and submit it to the OMG as a draft specification or input to a
Request for Information (RFI).

• Prototype Software. We are prototyping the parts of the Survivability Service
related to decision making, including a market mechanism for resource allocation,
simple models and model evolution to drive survivability decisions under changing
conditions, specifications of how to rebind logically equivalent or similar services,
and some visualization. This will allow demonstration of a cohesive part of the
Survivability Service that can later be attached to failure detectors and actual ORBs to
carry out decisions made in the part of the system implemented. This strategy also
matches well with our understanding of work done by other projects so that we can
avoid too much development overlap.

4. Technical Approach
OSA survivability is not a tabula rasa; there is already substantial existing work in a
number of areas that bear directly on the problem, but that work is largely disjunct and
does not solve all of the problems. Our approach is to identify useful existing and

17

Appendix A-l

proposed technology (largely from the research community, since little of this technology
has penetrated the commercial world), determine how this can be applied to OSAs, and
integrate it into a unified whole. The result is a layered architecture for a Survivability
Service that provides increasingly sophisticated kinds of survival strategies using a
market mechanisms to allocate resources based on a number of models. Survivability is
added to applications and services by exploiting properties of OSAs that allow the
Survivability Service to seize control when needed to reconfigure the system. The major
aspects of the system are outlined below.

4.1. Survivability Architecture

Survivability requires a variety of actions that are organized in the Survivability Service
into the following layers.

• Basic Process Control: The ability to start, stop and restart processes, to clean up
after failed or aborted processes, and to restore processes to known states. Most of
this is provided by ORBs.

• Fault Tolerant Services: These are services designed to (usually) fail in known
"good" ways. Their failure modes become part of the service specification. This
must be provided by the service developers.

• Failure Detection & Classification: These mechanisms detect the symptoms of
failures and attacks, and classify the events into likely failure categories. This can be
done through probes, wrappers, or exception reports from well-behaved services.
Classifying observed symptoms into error categories is at least partially based on the
failure mode specifications of the fault tolerant services. We are not working in this
area, and will either obtain these mechanisms from elsewhere or assume an oracle for
demonstration purposes.

High Service Availability: These are a collection of mechanisms to make individual
service instances much more highly available than they would otherwise be.
Techniques are either based on replication or hierarchical masking (i.e., error handling
in the client). We concentrate on using replication-based policies since they do not
rely on the semantics of the services and are therefore more widely applicable. Many
replication-based policies exist (e.g., voting, hot backup, error correction) and some
are integrated with ORBs (e.g., Electra and Orbix+Isis). These mechanisms must be
efficient since they are invoked during normal (non-error) operation. At this level, it
becomes possible to physically reconfigure an application by changing the way
individual services are implemented. The logical organization remains fixed in that
clients still interact with the same services after any reconfiguration.

Availability Management: This layer manages the use of the High Service
Availability mechanisms. It determines the appropriate fault tolerance mechanism to
use for a given service based on service failure modes and perceived threats, and
determines the resource pool needed to achieve desired availability. It can be less
efficient than the lower layers since its use is infrequent or can be a background
activity.

18

•

Appendix A-l

• Service Renegotiation: At this level, it becomes possible to change the logical
organization of an application by binding clients to alternate services if the desired
service should become unavailable or degrades in performance. The rebinding can be
to an equivalent, but distinct service (e.g., a different server having the same maps), or
to a similar, but acceptable service (e.g., a different server with maps of the same area
but at lower resolution). Alternatively, the same service connection can be
maintained but at a lower quality of service (e.g., more errors or slower). This is
semantically more sophisticated than lower layers and requires specifications of
client-service connections beyond those currently used in OSAs. Use of threat,
situation, and resource models is definitely recommended. In addition to allowing
rebinding to service alternatives when services fail, service renegotiation can
represent a fallback position if the costs of assuring service availability become
unacceptably high.

4.2. Models

A variety of models are used by the Survivability Service. All models must be
distributed. The models include:
• Resource Model: This captures physical resources, services, and code that

implement the various services. It will definitely be partitioned.

• System Model: This defines the perceived current system configuration. It may be
inaccurate, since it will be asynchronously updated and failures may not be detected
until some time after they occur.

• Attack/Failure Model: This defines the types of possible attacks and failures, and
the consequences (affected resources) of each.

• Threat Model: This augments the Attack/Failure Model by adding the anticipated
likelihood of each kind of attack or failure. It is used when classifying errors and
when determining how to reallocate resources (it does little good to rely on a resource
believed to be under increased attack). The Threat Model may be influenced by the
Situation Model.

• Situation Model: This defines the relative importance of tasks in the current real-
world situation and modifies the Threat Model according to threats that are situation-
based (e.g., physical attack is more likely when at war).

4.3. OSA Hooks

The various survivability techniques discussed above must be integrated into the OSA
framework. This is straightforward, since one of the main characteristics of OSAs is the
loose, well-defined boundary between clients and services. While not currently part of
the OMG CORBA 2.0 specification, the ability to trap traffic across the ORB has been
requested by the OMG Security Service and will probably be part of future CORBA
specifications. This would allow binding to service replicas and rebinding to service
alternatives in a straightforward fashion. Simple extensions (or protocols on top of) the

19

•

Appendix A-l

way in which services are launched would support the choices of implementation type
and location essential to place services intelligently.

5. Project Documents
The following reports have been (or are expected to be) produced under this project.
Because we are at a midpoint in the project, even those reports that are currently in "final"
form are expected to be revised next year as we refine the models and specifications, and
as development of the Survivability Service progresses.

Survivability in Object Services Architectures, [this report] This report describes the
goals, approach, and anticipated results of the project "Survivability in Object
Services Architectures". It also introduces a collection of other reports produced on
the project.

Composition Model for Object Services Architectures. [9/97, revision expected
10/98] This report describes extensions to the standard Object Services Architecture
model to support composition of OSA-based applications from object services using
external binding specifications. Isolating the decision about which particular service
to bind to from the abstract specification of the characteristics of the service required
allows binding decisions to be reasoned about in the context of global system
knowledge generally unavailable to the developer of an individual application, either
because the environment is too complex to be fully understood, because the
environment is changing dynamically as the result of attacks or failures, or because
the system is being deployed in an unanticipated environment. This gives the ability
to tailor application configuration based on current resource utilization and perceived
threats to the system resources. The result is the ability to configure more survivable
OSA-based applications than would otherwise be possible. The OSA Composition
Model is the basis for the Evolution Model for OSAs and supporting Evolution Tools
for OSAs which migrate application configurations from one legitimate state to
another.

Evolution Model for Object Services Architectures. [9/97, revision expected 10/98]
This report describes extensions to the Object Services Architecture model that make
it possible to safely migrate a running application from one legitimate configuration
into another legitimate configuration. Both semantically identical and semantically
similar transformations are possible under this model, which allows applications to
continue to survive in degraded mode when system resources become unavailable due
to attack or failure. Legitimate transformations are determined based on the original
application service binding specifications as described in the Composition Model for
OSAs and mapping rules that define various possible transformations. From within
the set of legal evolution possibilities, a number of system and threat models are used
to determine a "good" transformation based on a malleable combination of predicted
safety, best performance, and lowest cost.

Evolution Support Toolset for Object Services Architectures, [to appear 11/97,
revision expected 11/98] This report describes the architecture of an OSA
Survivability Service that uses the OSA Composition Model to initially configure

20

Appendix A-l

OSA-based applications and reconfigures them for survivability using the OSA
Evolution Model. The Survivability Service uses a single set of system models and
specifications for both purposes. The Survivability Service is compatible with
existing work in failure detection and classification, fault tolerance, and highly
available systems. Both the internal architecture of the Survivability Service and its
connections to external services are described. Portions of the Survivability Service
are being prototyped as part of this project.

• User Manual for the Evolution Toolset for Ohiect Services Architectures, [to appear
11/98]. User and installation guide for the Evolution Toolset prototype. Lists
limitations and known bugs.

• QMG Object Change Management Service Proposal, [to appear 10/98] A proposal
to the Object management Group for a Change Management Service based on the
work performed on this project. The report will be basically a rewrite of the other
project documents into a form compatible with OMG standards for draft
specifications.

21

Appendix A-2

Composition Model
for

Object Services Architectures

David L. Wells, David E. Langworthy,
Thomas J. Bannon, Nancy E. Wells, Venu Vasudevan,

Object Services and Consulting, Inc.

Dallas, TX

{wells, del, bannon, nwells, venu}@objs.com

Abstract

This report describes extensions to the standard Object Services Architecture model. The
extensions support the composition of OSA-based applications from object services using
external binding specifications, making it possible to isolate the decision about which
particular service to bind from the abstract specification of the characteristics of the
service required. This allows binding decisions to be reasoned about in the context of
global system knowledge generally unavailable to the developer of an individual
application, either because the environment is too complex to be fully understood,
because the environment is changing dynamically as the result of attacks or failures, or
because the system is being deployed in an unanticipated environment. This gives the
ability to tailor application configuration based on current resource utilization and
perceived threats to the system resources. The result is the ability to configure more
survivable OSA-based applications than would otherwise be possible. The OSA
Composition Model is used by the Evolution Model for OSAs and supporting Evolution
Tools for OSAs which migrate application configurations from one legitimate state to
another.

1 '
This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory
under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Copyright 1997,1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided
this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of
the information in this document.

■ " -»

22

Appendix A-2

Table of Contents
24 1. Introduction

2. Overview of OSAs and OSA-Based Applications 24

25 3. Levels of Abstraction
25 3.1 Object Abstraction

3.1.1 Examples 26

3.1.2 OIDs 27

3.1.3 Interface 27

3.1.4 State 28

28 3.1.5 Implementation
28 3.2 Architectural Levels

3.3 Goals of the OSA Survivability Model 30

33 4. OSA Composition Model J

34 4.1 Object Abstraction ^

4.2 Models 41

4.2.1 Resource Model

4.2.2 Failure/Attack Model 46

4.2.3 Threat Model 47

49 4.2.4 Situation Model ^7

49 5. OSA Implementation Architecture w

49
5.1CORBA *y

49
5.2Active-X Hy

co T 50 5.3 Java
6. Mapping the OSA Survivability Model to OSA Implementations 50

6.1CORBA 50

6.2Active-X 50

,, T 50 6.3 Java
7. Current OSA Survivability Model Specifications 50

7.1 Resource Model 50

7.2 Failure/Attack Model 55

7.3 Threat Model 55

7.4 Situation Model 55

23

Appendix A-2

1. Introduction

An OSA-based application consists of a collection of object services interacting across an
object bus. Not all possible configurations of OSA-based applications are equally robust,
nor are all configurations equally able to be reconfigured. To facilitate the construction
and maintenance of survivable OSA-based applications, it is desirable to define a subset
of the possible OS A configurations that is known to be more survivable and that can be
reconfigured into another configuration in the survivable set. Such configurations should
be easy to construct. The OSA Composition Model described in this paper defines such a
subset of OS As.

The paper is organized as follows. Section 2 gives an overview of OSAs and OSA-based
applications, and identifies weaknesses in current technology that cause systems to by
non-survivable. Section 3 discusses variations in the level of abstraction at which objects
and OSAs can be defined. This is important, since our approach is to define higher levels
of abstractions that allow the creation of survivable configurations. These higher levels
of abstraction, as well as a number of models needed to support them, are defined in
Section 4. Section 5 discusses the properties of existing OSA implementations onto
which our abstraction is mapped; Section 6 describes this mapping. Section 7 gives the
current (working) definitions of the various models introduced in Section 4.

2. Overview of OSAs and OSA-Based Applications

An OSA-based application consists of a collection of objects interacting across an object
bus. A calling object is called a client; a called object is called a service. An object may
be both a client and a service.

Every object is characterized by a unique OID, one or more interfaces defining the
services the object can provide, and state reflecting the effects of past operations
performed on the object through its interfaces. An object's interface is specified by an
interface type that defines the collection of methods by which objects of that type can be
manipulated. Interfaces may be related by subtyping, but this is not necessary; i.e., an
object may provide the services defined by two interface types without the existence of an
interface type derived from either.

The object bus over which objects interact is a messaging system by which services are
located, instantiated (if necessary) and bound to clients, methods are invoked, and results
and exceptions returned. The bus may be synchronous or asynchronous. Broadcast and
multi-cast may or may not be supported in addition to point-cast. Objects interacting
across the bus may reside in the same process, a different process on the same machine,
or on different machines. Even if the communicating objects reside in the same process
(address space), the existence of the object bus between them is important since it
provides a control point where mediation can take place transparent to either object.

In order to perform the methods defined by an object interface, the interface type must be
implemented in code. An implementation class implements the behavior of the type and
provides an object bus connection. There may be multiple implementation classes for a
given interface type. This allows alternate implementations with different time/space
tradeoffs, different environments in which they can run, different languages, etc. A given

24

Appendix A-2

implementation class can implement multiple interface types; this is often exploited when
existing code is "objectized" by wrapping.
In order to be operated upon, a service must be instantiated. A service instantiation
consists of an OID, the code for an implementation class, and state in a form compatible
with the instantiation class. While logically an object's OID, state, interface, and
implementation are bundled, in practice they are separate and are managed differently
(generally, a single copy of the implementation is used for many objects, and state is
frequently stored separately in a DBMS or file system). The object bus generally is able
to instantiate a service (including assembling the constituent parts and launching it) if an
attempt is made to use a service that is not already instantiated. This prevents resources
from being consumed by services that are not currently being used.

Because clients and services interact across the object bus, the client cannot directly
manipulate the service instantiation. Method invocation and result return is done through
a surrogate that resides with the client and provides a connection to the service
instantiation. A surrogate (often called a proxy) is implemented by a surrogate class,
which, like the implementation class, is a subtype of the server object's interface type.
Like implementation classes, there may be multiple surrogate classes for a given interface
type. This allows surrogates to be in different languages or to be customized to provide
additional functionality (e.g., caching).
To actually cause information to be transmitted across the object bus, both the surrogate
class and the implementation class must package and unpackage arguments and return
values (this is called marshaling and unmarshaling). Code to perform these tasks can be
generated from the interface type, so it places no burden on the service implementer.

For a client to use a service, the service must be bound. In binding, a service instance is
identified and a surrogate for that service instance is created in the client process. The
service instance being bound is ultimately identified by its OID. The determination of
which service instance to bind can be done through a complex process if supported by the
OS A; increasing the sophistication and flexibility of this binding process is one of the
keys to OSA survivability.

3. Levels of Abstraction
In the above description of OSAs and OSA-based applications, only a single level of
abstraction is presented. However, this oversimplification of reality confuses a number of
issues. We concern ourselves with abstractions of both objects and architectures. These
are discussed in the following two subsections.

3.1 Object Abstraction

Objects are defined and implemented at a number of levels of abstraction. While all of the
object concepts such as OID, interface, implementation, and state exist at all levels, their
meanings and the ways in which they can be used vary with the level. For this reason,
when defining or using a construct, we must be careful to be clear which abstraction we
are dealing with.

25

Appendix A-2

3.1.1 Examples

Consider the following related motivating examples based on the concepts of object
identity and instantiation. Two fundamental properties apply to the object abstraction at
any given level:

• all operations performed against an object contribute to the object's abstract state,
which in turn affects all subsequent users of the object, regardless of how they access
it, and

• all object handles to the same service must be equivalent (i.e., return "true" to some
appropriate comparison function).

Note that this says nothing at all about how these simple conditions are implemented.

An obvious way to enforce the conditions is by having a single instantiation of the object,
which is reached via object references related to the object's OK). However, this does not
work if the object's concrete state (a particular representation of the abstract state that is
manipulable by the implementation) must exist in more than one address space
simultaneously. This is the case with persistent objects, which must exist in memory to
be manipulated and must exist on disk (or similar) in order to persist. A DBMS keeps the
two instantiations consistent at appropriate times (fault, commit, etc.) and disposes of the
memory instantiation when no longer needed. The client always receives handles to the
memory instantiation, so it appears that there is only one instantiation and one ODD, but
the DBMS must be aware of both instantiations, each with its own, distinct, ODD. Thus,
the object at the higher level of abstraction is implemented by two objects at the lower
level of abstraction. Note that this is not the same as a composite object at the higher
level of abstraction, in which multiple higher level objects are accessed via a single
higher level object. In our example, the lower level objects have no existence at the
higher level of abstraction.

Another reason for different levels of abstraction is exemplified by early implementations
of LISP. Everything, including numbers, was reached via pointers that behave like OIDs
in that they uniquely identify things. The result was that a program had a single
instantiation of "5", pointed to from multiple places. This was inefficient in space (the
pointer is the same size as the integer it points to) and time (pointer following consumes
an instruction). An obvious optimization was to embed the number back into the position
occupied by the pointer and operate on it directly. This resulted in multiple instantiations
of "5". However, despite having multiple instantiations of the same "proto-object", the
consistency constraint was not violated because the "5" is immutable. Since "5" was
never modified, the fact that there were multiple instantiations didn't matter, since all
would have the same abstract state. Better still, no effort was required to keep them
consistent. Here again, the abstraction of a single "5" was not the reality at a lower level
of abstraction. Handle equivalence means simply redefining the equivalence operator to
return true if objects of that type have the same value.

The above example has an analogy in OSAs. When objects become widely distributed or
heavily used, there are significant advantages to be gained from replicating them to
reduce bottlenecks or communications costs. Of course, unless the objects are

26

Appendix A-2

immutable, coordination must occur among the replicas to ensure that they behave
consistently. It is important that the client of the object use a single OID regardless which
replica is used, since otherwise comparisons of object handles will not be consistent.
However, the mechanism that coordinates the replicas must differentiate amongst them,
which requires different handles and hence different OIDs. Note that this applies to
implementation classes and interface types as well as to object instantiations.

Each of the four key aspects of objects: OID, interface, state, and implementation may be
affected at the various levels of abstraction typically found. Below is a rough summary
of the kinds of changes seen in each as the level of abstraction changes. There is no
attempt to be complete or to burrow down to the lowest level of abstraction, since that is

ultimately just bits.

The levels described here are not absolute, and any given object model may mix the
properties from various layers. However, it is unlikely that any one abstraction will be
substantially more sophisticated than the others, because of the obvious linkages between
them. Naturally, there is a tendency to become more machine-oriented as the level of
abstraction gets lower. This does not necessarily mean less complex.

3.1.2 OIDs

At low levels of object abstraction, OIDs are simple; they tend to identify specific
physical locations; e.g., a disk or memory location, port address, etc.). These OIDs also
tend to have limited scope; e.g., addresses in a single machine or subnet.

At intermediate levels of object abstraction, OIDs tend to have a more complex internal
structure that is used to encode properties of the object such as its type and where its
instantiation or persistent state resides. This makes for greater efficiency when following
the OID to the instantiation, but also introduces some rigidity since these properties of the
object that should be able to be changed transparently to the client cannot be changed

without changing the OID.

At high levels of object abstraction, OIDs are again simple, but now they are very
abstract. There tends to be little or no substructure to a such OIDs; what structure there is
is usually a consequence of partitioning the OID domain among a number of OID
allocation services to avoid bottlenecks when new objects are created. If OIDs are
allocated on a per type basis, the OID may imply an object's type, although this is
undesirable since it precludes evolving the object's type. Such OIDs have global scope;
an OID is unique across the entire span of the OSA.

3.1.3 Interface

At low levels of object abstraction, interface is intimately tied to the programming
language of the implementation. Subtyping is allowed. Types cannot evolve.

At intermediate levels of object abstraction, interface types become language

independent.
At higher levels of object abstraction, types may evolve while maintaining the same type
identity. Objects may evolve with the type or versions may be maintained.

27

Appendix A-2

At still higher levels of abstraction, an object's type may change either by being refined or
changed altogether. For example, a vehicle is determined to be a truck, then refined to be
a Ford, then the classification is determined to have been wrong, so the vehicle is
reclassified to be a Chevrolet.

3.1.4 State

At lower levels of object abstraction, state is defined in terms of the programming
language of the implementation.

At intermediate levels of object abstraction, multiple copies of the state may exist (e.g.,
persistent and manipulable), but only the representation used by an object instantiation
may be manipulated from a client. The others exist solely for housekeeping within the
object layer, such as allowing an object to retain its state even when not instantiated.

At higher levels of object abstraction, object state must be able to be transferred from one
representation to another to support multiple implementation classes for an instantiation
and to support type (and hence class) evolution.

3.1.5 Implementation

At low levels of object abstraction, implementation is language-specific. Polymorphism
allows an interface type to have multiple implementation classes, but any individual
object will have only a single instantiation type. Instantiations are limited to a single
address space (note this does not preclude the implementation from distributing itself, but
there is no support in the object abstraction for this). An instantiation consists of a single
copy of an implementation class; there is no support for replication.

At intermediate levels of object abstraction, the implementation classes of a type may be
from different programming languages. A service need not be in the same language as a
client calling it. Little else changes.

At high levels of object abstraction, there is a great deal of implementation independence.
An individual object can have multiple implementations over time. This allows bug
fixes, performance improvements, and object migration by allowing the object's
instantiation to move to different platforms and platform types. An object's
implementation can be replicated, with the replication being supported by the abstraction.

3.2 Architectural Levels

Typically in OSA-based applications, one finds two levels of architecture: an application
architecture and an OSA implementation architecture. Any architecture defines the
(potential) functionality, configuration, and multiplicity of the components of systems
instantiated under that architecture. In other words, it defines the properties that must be
met by any legitimate instantiation. The notion of legitimacy, expanded on below, is key.

An application architecture defines these properties for a particular application (e.g.,
avionics for the F-22 with specific on-board sensors) or application family (e.g., avionics
for a class of aircraft with a variety of sensor types). It is obviously specific to a
particular application domain.

28

Appendix A-2
The OSA implementation architecture defines an object model on which applications are
built. It corresponds closely (or exactly) to what is provided by an OSA implementation
such as CORBA, Active-X or Java. An OSA implementation architecture is non-
application-specific, but corresponds closely to the details of the object model and
messaging implementation of the object bus that will be used. As such, it is closely tied
to existing technology.
To make the construction of survivable OSA-based applications tractable, we argue that
two levels of abstraction is insufficient. A third layer, which we call the OSA survivabihty
architecture, is needed between the other two layers. To justify this, consider these
(necessary) limitations of the application and OSA implementation architectures.

The OSA implementation architecture defines a minimal set of necessary properties.
Mechanisms are defined to specify interface types and to associate implementation
classes with them. Objects can be created and destroyed. They can also be registered with
the object bus so that they can be subsequently located, bound, sent messages, and return
results or exceptions. Only those properties necessary to perform those operations are
defined. There are two rationales for staying simple at this level: the model must be
implemented efficiently on a variety of platforms and languages, and a generic object
model can support a wider variety of uses than can a more specific model. Together, this
results in an object model roughly equivalent to what was defined above as an
intermediate level of object abstraction.
One drawback to this approach as the level on which applications are directly constructed
is that features such as replication, type evolution, etc., that can be provided in higher
level object abstractions are not provided. Thus, they will either be foregone, or will be
developed in an idiosyncratic way that is time consuming and will not interoperate with
other idiosyncratic solutions to the same problem. Another drawback is that such a
general architecture admits a large number of undesirable configurations as legitimate.
Some configurations are simply inefficient or brittle; e.g., placement of all replicas of an
object on the same host machine. Some are syntactically correct but semantically
meaningless; e.g., binding to a map service with the right interface type but that contains
maps of the wrong region. Finally, forcing the application to deal with these issues
means that they will be decided at development time, or at best, when a specific
instantiation is deployed; the underlying system can give no support for evolving an
application to meet survivabihty goals.
The application architecture, as observed above, also is an inappropriate place to address
these limitations, since the solution to them is applicable to many application domains,
and development cost should therefore be amortized. Equally important, to make a
collection of systems sharing a resource pool able to collectively survive based on global
notions of requirements and worth, it is essential that no application be solely responsible
for its own survival, since this precludes systemwide decisions from being made.

Multiple application architectures use the OSA survivabihty model, which in turn can
reside on top of a number of OSA implementation architectures. This is shown in the
figure below.

29

Appendix A-2

Application Architecture n

Application Architecture 2

Application Architecture 1

\7

OSA Survivability Model

OSA Implementation
Architecture

[Java]

OSA Implementation
Architecture

[Active-X]

OSA Implementation
Architecture

[CORBA]

3.3 Goals of the OSA Survivability Model

The OSA survivability architecture is intended to accomplish the following:

• provide a higher level object model that frees application developers from the
rigidities of the OSA implementation architectures currently extant,

30

Appendix A-2

. restrict the set of legitimate configurations admitted by the OSA implementation
architecture to a subset of survivable configurations that are themselves robust and
that can further be evolved into other survivable configurations (evolution is
discussed in Evolution Model for Ohiect Services Architectures),

• provide places to introduce the survivability mechanisms of basic process control,
fault tolerant services, failure detection and classification, high service availability,
availability management, and service renegotiation as provided by the Survivability

Service1, and
• be mappable to a variety of OSA implementation architectures, notably CORBA,

Active-X, and Java (evolutions must also be mappable).

The OSA Survivability Model is composed of two submodels: an OSA Composition
Model (described in this report) that defines legitimate configurations, and an OSA
Evolution Model (described in F»nl«tian Model for Ohiect Services Architectures) that
defines moves between legitimate configurations. Naturally, the two models are c osely
related, since we avoid putting a construct into the Composition Model unless we know
how to evolve it. This means that it is likely that both models will gam additional
constructs over time as we discover new evolution strategies.

Restriction of legitimate configurations is shown in the figure below.

Configuration A

i See fjurvbmhUto in O*!«* S*™*«* Architectures for a brief overview of these mechanisms.

31

Appendix A-2

Mappings to the OSA implementation architecture and evolution at both levels are shown
in the following figure. Note that while evolution takes place within the OSA
Survivability Model, this corresponds to reconfiguration at the OSA implementation
level. This is because the OSA survivability model contains the concept of evolution,
while the implementation level does not. The result is that the new and old
configurations are related only at the survivability level; at the implementation level, the
two configurations are both legitimate according to the OSA composition model, but are
otherwise unrelated (at that level of abstraction).

Original Configuration
per

OSA Survivability Model

Evolved Configuratuion
per

OSA Survivability Model

Evolution in OSA Survivability Model

Original Configuration
in

OSA Implementation Arch

New Configuration
in

OSA Implementation Arch

Reconfiguration in OSA Implementation

32

Appendix A-2

The OSA Composition Model and OSA Evolution Model specify desirable
configurations and moves as well as legitimate ones. Obviously, not all legitimate
configurations are equally desirable in one sense or another. For example, a
configuration that places all replicas on a single machine in a burning building would not
be especially desirable from a survivability standpoint, although the momentary
performance might be excellent because of lack of competition for the resources. Also,
some configurations may be more desirable because they offer a higher QoS than some
other configuration that is also acceptable.

4. OSA Composition Model
To support the construction of survivable configurations that are not directly created by
application developers, the Composition Model consists of:

• a clean, high level object abstraction in which developers specify, implement, and
connect services. The object abstraction:

• makes a very clean distinction between the abstraction of a service instance and its
implementation(s) in order to support replication, instance migration, change of
implementation class for a given service instance, and multiple simultaneous
implementation classes for a given instance;

• abstracts the bindings of clients to services and implementations to resources in
order to allow an OSA Survivability Service to determine which service instance
best meets the needs of a client, and how and where that service instance should

be instantiated;

• defines useful patterns of object configurations that have desirable survivability
properties that can be instantiated by the Survivability Service; and

. uses the concept of quality of service (QoS) to allow alternatives to both service
bindings and implementation instantiations in the event resource limitations
prevent optimal behavior.

• resource, attack/failure, threat, and situation models that collectively are used to

determine:
• which of the acceptable configurations specified by the developer using the object

abstraction are actually instantiable given the available resources; and

• which of the instantiable configurations is the most desirable given the competing
demands for resources, the values of the various services, and perceived threats to

resources.
The remainder of this section presents our object abstraction and the supporting models.
During this discussion, we identify how the various survivability mechanisms (basic
process control, fault tolerant services, failure detection and classification, high service
availability, and availability management) fit into the abstraction and models. Service
renegotiation is discussed at length in Evolution Model for Object Services Architectures.

33

Appendix A-2

4.1 Object Abstraction

We base our abstraction (and terminology) to the largest extent possible on the OMG
object and object bus models, clarifying and adding new features where necessary for the
goals of survivability. Active-X is very similar to the OMG models in the important
dimensions, so similar extensions and mappings there appear straightforward. Java has
different strengths and weaknesses, but extensions and mappings also appear tractable in
that domain.

The OS A Composition Model's object abstraction is illustrated by the figure below.

34

Appendix A-2

makes * ►

leader-

- replicas *-

runs on

-satisfied by

Service Binding
Requuest

-instantiated by-

Service
Instantiation
Coordinator

coordinates *

Implementation
Object

Instance

implementation
objects *

instantiated by

Implementation
Object

Instantiation

Kev

-code-

1-1
invariable

1-1
time variable

1-N'
invariable

1-N* _
time variable

Interface Type

implemented by *

Implementation
Class

35

Appendix A-2

Objects are defined at three levels of abstraction (from high to low): services and service
instances, service instantiations, and implementation object instances and implementation
object instantiations. Connections between objects are always specified at the level of
services and service instances. The functionality (i.e., code) of services is implemented at
the level of implementation object instances and implementation object instantiations, as
is their instantiation as CORBA objects. Service instantiations, known only to the
Survivability Service, form the bridge between the other two levels.

In the abstraction, clients make requests for services by specifying the service required as
a service binding request, which is a statement of what the requested service must do.
For any given service request, there are potentially many service instances able to provide
that service. One of these service instances is chosen to be bound to the client to actually
provide the service. The pool of service instances that can satisfy the service request may
vary over time, as may the choice of service instance to be actually bound .

In order for the service instance to be able to receive messages (necessary to actually do
anything), it must be instantiated; the constructs to instantiate a service instance are
collectively called a service instance instantiation. While there may be only one of these
at a time for a given service instance, an instance need not always be instantiated in the
same way. A service instance instantiation is composed of a service instantiation
coordinator and one or more implementation object instances. As its name implies, the
service instantiation coordinator coordinates the activities of the implementation objects.
The implementation objects implement the functionality of the service instance. These
are objects at the level of the implementation OS A, e.g., CORBA. As such, they are
implemented (defined and coded) and instantiated (scheduled, executed, and set up to
receive messages) as specified by the implementation OSA being used. For a given
service instance instantiation, both the service instantiation coordinator and the collection
of implementation object instances may vary over time. If not currently bound, a service
instance need not be instantiated, allowing resources to be reclaimed.

Interface types and implementation classes are defined as usual, and there may be
multiple implementation classes for a given interface type. Service instances and
implementation object instances share a common interface type. This allows messages
sent to a service instance to be forwarded to the underlying implementation object
instances without reinterpretation.

The instantiations of service instances and implementation objects are fundamentally
different in two ways. First, implementation objects are instances of some
implementation class defining the data structures and code; this is specific to the
semantics of the type. On the other hand, service instances are in no way associated with
a particular implementation class; instead, they are implemented by the combination of a
service instance coordinator and a collection of implementation objects. The service
instantiation coordinator is not type-specific to the implementation object instances3,

2 Knowing alternatives to the bound service is essential to evolving the system should the initially bound
service fail. This is discussed more in Evolution Model for Object Services Architectures.
3 Except possibly as a convenience to cause signatures to match, but this can be generated automatically.

36

Appendix A-2
which means that a coordinator can coordinate for any type of implementation objects.
Importantly, the implementation objects in the collection may change over time, meaning
that while an individual implementation object is tied to a particular implementation class
(and in CORBA to a particular host), no such restriction applies to service instances. The
second major difference is that implementation object instances are instantiated in a
single (as far as the ORB is concerned) process, while service instances may be
instantiated in multiple processes on possibly different hosts. This has implications on
the relative failure modes of service instance instantiations and implementation object
instantiations that are discussed below. An implementation object may be instantiated in
different locations each time it is instantiated; this may be directly supported by the
Implementation ORB or may be added.

We now consider in somewhat more detail what this looks like to application developers,
service implementers, and the Survivability Service.

From the perspective of a requester of computation, the world is organized as a collection
of service instances, each of which performs a service. A service is defined very
generally as useful work performed on behalf of a client by some entity outside the client.
Services are provided by service instances; the concept of a service has meaning only to a

client.
Services respond to messages sent by the client. Because it is often the case that the
messages from a client requesting a service are related, a client is bound to a service
instance to ensure that all messages reach the same service instance.

Every service instance is an object, and as such is characterized by an OID, one or more
interface types (possibly related by subtyping) each of which defines a set of functions to
which objects of that type respond, and an abstract state reflecting past operations
performed on the object through its various interfaces. The service provided by a
particular service instance is dependent on its interface (the kinds of things it does), its
abstract state (what it knows), changes in state as the result of requests from other
simultaneous clients (object identity determines this), and the quality of the results (in

some QoS metric).
It is possible that at any given time, exactly the same service could be provided by more
than one service instance. For instance, if two Map_Service instances (say one at the
University of Texas and the other at Texas A&M) start out at 12PM managing identical
maps they provide the same service as long as QoS is the same and there is no interaction
with other clients. If this could be ensured, either service instance would be acceptable to
the client Note that since these are distinct service instances, by 1PM updates could
cause them to provide different services. For example, the A&M Map_Service instance
could have been updated to record flood damage not recorded at the other service

instance.
It is possible that non-identical services may be indistinguishable to the client requesting
the service. In this case also either service instance would suffice.

A more interesting case is when differences exist between services, but these differences
are irrelevant to the client. Consider again the pair of Map.Service instances. If a client
will only request maps of Texas, the fact that the A&M Map.Service does not have the

37

Appendix A-2

same set of lunar maps as the University of Texas Map_Service instance is irrelevant.
Many other examples can be considered related to QoS (both deliver the maps in an
acceptable amount of time, though A&M is faster). Sometimes physical position of the
service instance matters, as in the case of a print service that is tied to a particular printer;
printing to either of two printers in the same room would probably be acceptable, but
printing in Australia might not be.

It is because of the above that a client requests a service, not a service instance. This
request is made as an abstract service binding request specifying what the client really
needs. This specification is interpreted by the Survivability Service and mapped to a set
(hopefully non-empty) of service instances that have the potential to satisfy the service
request. Determining which service instances can satisfy a given service specification is
non-trivial, and requires information about service instances that is not currently available
in OSAs. Essentially, all service instances must advertise their (potential) properties that
may be of interest to their likely clients. It is not clear at this point what properties are
most needed, but minimally it must be possible to describe service type, abstract state,
other clients to be interacted with (or not), and QoS. The vocabulary of terms to be used
in service requests and service instance advertisements will likely be service-specific; at
this point it is also not clear exactly what this vocabulary should be4.

As a special case, it is important that type and OID be legitimate service requirement
specifications, since this is a common, and efficient, way to bind. A service instance's
OID is a degenerate way to specify both abstract state and interactions with other clients.
However, since it does not admit a set of possible service instances, it gives away an
important degree of freedom for survivability. Note that although CORBA provides
some abstraction of the binding of a client to a service instance (or what in our
terminology would be a service instance), it is limited to path completion, and does not
concern abstract state or QoS. As we shall see shortly, this poses a different problem
since it fixes the implementation of the service instance unacceptably, thereby giving
away an even more important degree of freedom.

Besides providing the correct semantics, a service instance must be instantiable in order
to potentially satisfy a binding request. There are a variety of reasons why a particular
service instance might not be instantiable in a way that satisfies a service binding request.
Among these are insufficient physical resources exist to deliver the required QoS, all
possible implementations being deemed to be inaccessible or compromised (corrupted),
the (persistent) concrete representation of the abstract state is unavailable, etc. A
collection of models (described in section 4.2) are used by the Survivability Service to
make this determination.

Note that the set of service instances that can satisfy a service binding requirement is
potentially huge. It is not required that the entire set actually be computed. This is
because only one service instance from the set will actually be bound. Thus, it suffices to

4 The proposed OMG Trader Service is a step in this direction in OMG, but that would not solve the other
limitations of the OMG object abstraction. In any event, the Trader also does not define a vocabulary.

38

Appendix A-2

determine only enough candidates that the Survivability Service has choices to allow it to
select a "good" service instance to bind.

Once a set of potential service instances has been computed, one of them must be selected
to be actually bound to the client. There are many criteria that can be used to make this
selection (after all, any of them are semantically acceptable given the binding
specification). For the purpose of constructing a survivable system, some of the
considerations of the Survivability Service are to choose a service instance that can be
instantiated in a robust way, uses minimal resources, and that can be easily reconfigured
should it fail to meet the service binding requirement. This is a potentially very
sophisticated tradeoff and is discussed further in Evolution Support Toolset for Object
Services Architectures. Regardless of the policy followed, information contained in the
models described in section 4.2 is required. This binding is where semantic renegotiation
is introduced as a survivability mechanism.

Once a service instance to bind is selected, it must be instantiated before it can interact
with a client. This is called a service instance instantiation. An important point is that
unlike other OSA object abstractions, a service instance may have different instantiations
at different times, and these instantiations may have very little physically in common. In
particular, they may be constructed from different code bases, run on different hosts or
O/S platforms, may be replicated with different multiplicity or with different replica
coordination policies5. In order to be a candidate for binding, a service instance must
have at least one possible instantiation.

A service instantiation is where the actual work of the service instance gets done. The
service instantiation is responsible for implementing the methods defined by the service's
interface type and for housekeeping to keep the service instantiation available. While
there may be many ways to do this, we use the following pattern because it is simple to
define and implement, corresponds to existing work in high availability services (see
Survivability in Ohiect Services Architectures for a discussion of this topic), and maps

well to CORBA.
A service instance instantiation consists of a service instantiation coordinator and N
implementation objects. An implementation object is an object in the object abstraction of
an underlying implementation ORB (e.g., CORBA), which also provides basic process
control for survivability. Being an object, it has an interface type, OID, and abstract state.
Being at the implementation ORB level, these concepts are interpreted with reference to
that object abstraction. The service instance instantiation provides high service
availability as a survivability mechanism. The determination by the Survivability Service
of the coordination policy, and the number, placement, and implementation class of
implementation object instances provides availability management.

5 None of this can be done directly in the CORBA object abstraction. While an IDL (interface) type may be
implemented by multiple implementation classes, once an object is instantiated, it will always use the same
implementation class and run out of the same "server" on the same host.

39

Appendix A-2

Each implementation object executes in exactly one process6 and is the basic unit of
failure. The implementation objects in a service instantiation are all instances of the same
interface type, which is the same as that presented by the service. In general, the
implementation objects may be of different implementation classes. The implementation
objects are not individually visible to any entities other than the service coordinator and
the implementation ORB (which must instantiate the implementation object and deliver
messages). A client of the service instance interacts with the combination of coordinator
and implementation objects in the same way it would interact with a unitary service
instantiation in an implementation OS A like CORBA; e.g., normal looking surrogates
and binding calls, single messages.

A service instantiation coordinator implements one or more coordination policies, each of
which achieves a different objective with respect to making services robust. Some of
these policies are voting (various schemes), hot backup, master-slave(s), and cold
(persistent) backup. Each technique has a particular situation (defined by failure
probabilities, likelihood of partition, relative frequency of reads to writes, etc.) in which it
works better than others. Replica coordination technology is well known in the realm of
high availability services.

The service instantiation coordinator does two things:

• it implements view change management: i.e., it keeps track of the current set of
instantiated implementation objects, the role each is playing at any given time (e.g.,
master/slave or peers), and maintains the right number of active implementation
objects by instantiating new implementation objects as needed, and

• it implements replica coordination; i.e., it receives messages from the client (directly
or by trapping messages sent to one of the implementation object instances), routes
messages to some subset of the implementation objects based on the chosen
coordination technique, collects responses from the implementation object instances,
reduces them to a single response, and returns that to the client. There may be more
than one round of communication within the service instance instantiation depending
on the coordination policy and responses (or lack thereof) from the implementation
objects.

Because the implementation objects are distinct and may be of different implementation
classes, any external services that they use need not be the same or even of the same type.
In general, using different external services will make the instantiation more robust.

The coordinator can be independent of the type of the implementation objects it
manages7. This is one of the key aspects of this pattern, since it allows services of any
type to be made more robust by simply developing a small number of coordinator types.

6 At least from the point of view of the ORB. If the object internally is implemented in multiple processes,
this is invisible at our abstraction level.
7 The coordinator need not know anything at all about the coordinated objects in order to coordinate them.
However, it is desirable for the coordinator to know which messages cause reads and which cause writes,
since this can be used to substantially reduce message traffic within a replica group. The meanings of the
messages need not be known to the coordinator and are not interpreted. Type-specific coordinators can be

40

Appendix A-2

A coordinator is often implemented in a distributed fashion, with a piece of the
coordinator residing with each implementation instance instantiation. This eliminates a
single point of failure and allows messages from clients to be addressed to a coordinator
residing with a nearby implementation object. Since, depending on the protocol, not all
messages need be seen by all implementation instances, this reduces message traffic
within the service instance instantiation. The coordinator could be a separate object
residing with the instantiation, or it could be compiled into the implementation code
using multiple inheritance or similar technique.

The pattern of a service instantiation coordinator and N implementation objects used to
instantiate a service instance isolates the implementation of a service instance from any
constraints imposed by the underlying implementation OSA. In particular, the restriction
that an implementation level object is of fixed implementation class determined when the
object is created is made irrelevant because there is no expectation that a service instance
will always be instantiated using the same collection of implementation objects. All that
is required to change implementation objects is a way to instantiate new implementation
objects so that the abstract state of the service instance (as embodied in the concrete state
of some valid implementation object or persistent state) is able to be transferred to the
new implementation object. There are a variety of ways this can be done; they are
discussed in Evolution Modal for Object Services Architectures.

The pattern also isolates service instances from the choice of coordination policy. This is
important since the circumstances that caused a particular policy to be chosen may no
longer apply, in which case a different policy must be selected. For example, a policy
that is very efficient when networks do not partition may become useless when network
partitioning becomes common.

As an aside, note that this same pattern can be applied to coordination policies for goals
other than high availability. For example, a service's data set could be partitioned among
several implementation objects, each managing a portion of the data space. The
coordinator would then transparently route requests to the appropriate implementation
object. The coordinator would need to have a predicate informing it how to route
requests, but would need no other information about the type.

4.2 Models

The following models, described below, are maintained.

• Resource Model

• Attack/Failure Model

• Threat Model

• Situation Model
For each, the major kinds of information contained in the model are described. Section 7
provides'specifics of the models (i.e., E-R diagrams or class definition) as currently used

developed that take advantage of the semantics of the interface type to gain added efficiency, but this is not
necessary, since the generic coordinators do quite well.

41

Appendix A-2

by the Survivability Service. That section will change and be expanded as we gain more
implementation experience and learn which details are most useful.

It is important that the level of detail in the various models match to the sophistication of
their use by the Survivability Service. For example, detailed failure models may be
unnecessary if the failure detectors employed by the Survivability service are not
themselves fine grained. This will probably result in similar levels of detail across the
models at any given time.

4.2.1 Resource Model

The Resource Model describes the properties (interfaces and capabilities) of the various
esources that are available for use or are already assigned to tasks. These are used to

determine feasible places to instantiate a service instance. The following kinds of
esources are of interest:

Service Types

Service Instances

Service Instantiations

Coordinator Patterns and Implementations

Implementation Classes

Implementation Object Instances

Implementation Object Instantiations

Interface and Implementation Repositories

Hardware

4.2.1.1 Services Types

A language-neutral interface specification for interface types is specified in a type
specification language that generally does not support implementation (i.e., has no
executable code). In OMG CORBA, this language is IDL. Interface specifications are
managed by an Interface Repository. Language-specific interface code is generated from
these language-neutral interface specifications. We are not concerned with this aspect of
ORBs, and plan on making no changes.

4.2.1.2 Service Instances

A record of all instances of each service type and their advertised properties is kept. A
(very) tentative list of properties that can be specified is:

• location of either the service instantiation or physical devices (e.g., sensors or display
devices) controlled by the service. It may be easier to specify that a service must be
instantiated on some particular supercomputer than to specify detailed resource
requirements that can only resolve to one host. In the case of controlled devices,
actions in the physical world are not portable to the extent of operations in
cyberspace.

42

Appendix A-2

. abstract state of the instance, especially when data partitioning of a large data set can
be well defined (e.g., map services could be differentiated by the region of the world
for which they manage maps). Service instances with the same interface and
implementation that respectively manage maps of France and Spain are semantically
different, even though the data may be in the same format and at the same resolution.

• quality of service that can (potentially) be provided by the instance. This should be
interpreted in the widest sense of QoS, which includes concepts such as resolution,
currency, and accuracy.

It seems desirable that the advertised characteristics either partition a space, form a
hierarchy over a space, or create a DAG. Location and abstract state lend themselves to
partitioning (e.g., maps of France or Germany) and hierarchy (e.g., maps of Europe,
France, Paris), while QoS tends toward DAGs (e.g., 10 second delivery is better than 30
second delivery, but there is no obvious hierarchy of "goodness" over 10 second delivery
with 3% errors or 30 second delivery with 1% errors).
If the properties that can be used for advertisements can be categorized like that, it should
be possible to determine feasible services for initial bindings, equivalent services if
rebinding is required, and approximately equivalent services if some requirement can be
relaxed by the client. This is to be a major portion of our study m the next year of this

effort.

4.2.1.3 Service Instantiations

The collection of currently instantiated service instances must be known, both to allow
them to be reached and to ensure that the instantiation is unique.

4.2.1.4 Coordinator Patterns and Implementations

A description of the coordinator policies that are available for use and where to find their
implementations. What each policy is good for needs to be described. This information
will be used when instantiating a service instance in a given resource and threat
environment. It is not clear what information is needed here, but it must be sufficient for
the Survivability Service to avoid using a coordination policy that is unsuitable.
Generally such policies have been developed to address particular combinations of
events such as "high read to write ratios in highly partitionable networks with infrequent
server loss". An issue is how to state this kind of information in a way that can be
matched with a given circumstance.

4.2.1.5 Implementation Classes

Implementation objects are instantiated as instances of some implementation class in the
implementation level OSA. At that level, a given object has a fixed class that is
determined when it is instantiated. Code for this class must be able to be loaded by the
implementation ORB, which means it must be able to be located. Management of such
information is the responsibility of the implementation OSA and is not discussed further

here.

43

Appendix A-2

Here, we consider only additional information about the implementation classes that is
relevant to the survivable object abstraction. This includes:

• repositories storing (or managing) the implementation class. This is used both to find
the executables and to help determine whether a compromise of the repository could
have compromised a particular copy of the implementation. For example, the
Survivability Service might determine that code from certain sources has been
implicated in an unusually large number of service failures and decide to use
alternative sources if they are available, or perhaps modify the Threat Model to
indicate that this code has a higher probability of failure than previously thought.
This could then be reflected in an increase in the number and variety of replicas
required to achieve a given availability.

• environmental and resource requirements of the implementation class. This includes
such information as platform type, O/S, and other code to be linked. It can also
include the quantity of resources required in order to provide various QoS that the
implementation class chooses to advertise.

• provenance (or level of trust) of the implementation. This can be used in conjunction
with the Threat Model to determine the likelihood of failure or attack against a given
executable.

• failure modes of the implementation. Hierarchical masking and replication-based
availability techniques work only when the probable failure modes of a given service
are know. Each implementation is required to declare its failure modes. This will
probably look something like a declaration of the exceptions a service can signal,
although it will subsume that list, since a service can fail in ways that preclude
signaling. Such declarations are expressible in IDL (i.e., there is a pre-defined OMG
or Active-X accepted syntax for exceptions). The following is an example of a failure
mode lattice proposed by Flaviu Cristian. Others are possible.

44

Appendix A-2

performance response

transient crash early late value transition

pause halting

If implementation classes are designed so that they fail only in a small, predictable set of
modes, implementation objects based upon them are called fault tolerant.

4.2.1.6 Implementation Object Instances

The implementation objects known to the implementation ORB, and their relationship to
service instances are kept. Implementation object instances have meaning to the
survivability object abstraction only as they implement service instances. Implementation
objects can be constructed as needed, assuming that the correct concrete state can be part
of the initialization. This state must come from either an existing implementation object
or from stored persistent state.

4.2.1.7 Implementation Object Instantiations

It is useful to know which implementation objects are currently instantiated, since this
reduces the cost of their use and may therefore change the choice of instance to use. This
information is probably best kept by the service coordinators rather than in a global
database.

45

Appendix A-2

4.2.1.8 Interface and Implementation Repositories

Code is stored in Implementation Repositories. The same implementation classes may be
replicated across many repositories for performance and robustness. Information must be
kept about the locations of the various repositories and about which executables
(including version information) reside in which repositories. Since repositories are a
source of vulnerability (they can be penetrated and their code corrupted or destroyed), it is
necessary to keep information about the trustworthiness of repositories just as for
implementation classes.

4.2.1.9 Hardware

This is a fairly straightforward description of hosts and networks. Their properties that
are relevant to either scheduling tasks or classifying failures need to be maintained. The
only real issue here is the level of detail that is useful. This needs to be determined based
on the sophistication of the various users of the model.

4.2.2 Failure/Attack Model

The Failure/Attack Model describes potential failures of, or attacks against, system
resources. Both failures and attacks cause resources to behave in ways other than desired.
The model is used in the diagnosis of failures and helps to determine desirable
configurations for survivability.

A failure or attack is described by a name, possible causal agents (who or what can cause
the event), and the resources that can be affected. The terms failure and attack, although
widely used, are somewhat misleading, since they imply unintentional and intentional
acts. A better terminology would be to simply identify whether an event was intentional
or unintentional, and if unintentional, has a benign external causative agent (e.g., operator
error) or is caused by some internal failure (e.g., disk crash). This categorization is
important, since intentional, malicious attacks are more likely to correlate than
unintentional acts, and are less amenable to statistical analysis (e.g., we can envision
"mean time between failure" measurements for hardware much more easily than "mean
time between viral attacks". The two classes of events may be dealt with differently by
the Survivability Service.

Some failures/attacks are service or implementation specific; these should have been
identified in the Resource Model as the failure modes of the services or implementations.
An exception raised in response to invalid inputs or crash-amnesia behavior are examples
of these kinds of failures. Others attacks/failures are generic and can apply to any
hardware or software. These are not part of the Resource Model, since they do not reflect
designed behavior. Examples would be viruses, network errors outside the OS A model,
and hardware failures.

One important issue with failures/attacks is the scope of resources affected by a single
occurrence of the event or the class of resources potentially affected by recurrence of
similar event. Threats to physical resources may be geographic in nature; for example, an
attack on a particular site or sunspot activity. Ideally, an application should be

46

Appendix A-2

configured so that a single occurrence of a failure/attack of would not compromise all
implementation objects in a service instance.
Threats to software resources are a bit more complex. There are three levels of software
failure: instance, implementation, and service. Instance failure is what is typically
thought of as failure. A particular service instance or implementation object instance fails
for one reason or another. The failure is due to some cause external to the interface or
implementation, for example loss of power, bad configuration of the environment in
which the instance runs, or hardware failure or penetration that corrupts the code of the
instance. Only that instance is affected, and it is unlikely that another instance can be
attacked in the same way. Recovery involves restarting (after fixing the local
environmental problems) or migrating the service or implementation object to somewhere
that presumably does not have the environmental problems. Implementation failure and
service failure are both higher level forms of failure. They indicate a fundamental
problem with an implementation class or an interface type respectively. These sorts of
failure would occur if a flaw were found in an implementation or interface that would
allow an adversary to violate the implementation or service repeatedly. Implementation
failure occurs if there is a bug in a program which could cause all instances of the
implementation to fail. Multiple independent implementation attempts to solve this
problem. The TCP open connection attack is an example of a service failure. Any
instance of any implementation of TCP is subject to the attack. It cannot be prevented or
recovered from within TCP. Implementation and service failures are not caused by the
environment in which an instance of them executes. However, the environment can
conceivably compensate for these kinds of failures (e.g., a security wrapper that prevents
certain message traffic).
The Failure/Attack Model is necessary to support failure detection and classification.

4.2.3 Threat Model

A threat is a potential event, the realization of which could cause the loss or degradation
of some set of system resources. If uncompensated, this could cause the system to
malfunction. The realization of a threat is either an attack or a failure as previously
defined in the Attack/Failure Model.
The Threat Model describes the threats to which a system is subject. This is basically the
assignment of a likelihood or probability to an attack or failure. This can be described as
a probability, a mean time between occurrences, or a fuzzy evaluation. All three should
be supported, since depending on the threat, different amounts of information are known
about its likelihood. Some threats such as hardware failure are quite predictable in the
large, while others, such as the introduction of a virus, are very subjective. This
description may be fairly simple or fairly complex. For instance, the Threat Model could
identify not only the probability of a threat being realized, but the probability of its
occurrence affecting particular resources.

The Threat Model is used to:

47

Appendix A-2

• help determine implementation object multiplicity for a given service instance
instantiation. The number of implementation objects needed to ensure a desired level
of service availability depends on how hostile the environment is.

• help determine implementation object placement. The objects should be placed to
avoid threats if possible. Joint probability of failure based on threats is important
here, since while the likelihood of a fire may be small, it makes little sense to place
replicas where they can all be affected by the same fire.

• help determine how to evolve a system. The cause of a detected failure is an
important consideration when determining a reconfiguration strategy. It is of course
desirable to reconfigure in a way that avoids the same attack if that attack is
considered likely by the Threat Model. It is also desirable to avoid reconfiguring in a
way that makes the system vulnerable to other attacks as predicted by the Threat
Model.

• attack/failure classification. The Threat Model is used in the estimation of the cause
of a detected failure. Symptoms of a detected failure are used in conjunction with the
threat probabilities to estimate which threat was the most likely cause. If multiple
attacks could cause the same symptoms, the Threat Model can be used to estimate
which is the most likely or to predict the most conservative course of action. For
example, a node failure may be most likely the result of a race condition, but if a virus
could also have caused the failure, it might be better to use a different load image
when restarting, even if this is more costly.

Threats are generally classified by whether they are intentional (e.g., viruses or bombing)
or unintentional (e.g., operator error or bad data) or naturally occurring (e.g., fire or
earthquake). Despite the fact that the same kind of information is kept for all threats, this
classification is important for several reasons. Naturally occurring attacks and failures
are often well understood; insurance companies and the like have studied these for years
and good statistics for them frequently exist. Furthermore, the severity of such threats is
usually inversely proportional to their frequency. Unintentional attacks and failures are
also fairly predictable, and it is unlikely that the success of an attack will cause others of
the same nature. The opposite is true of intentional threats; success breeds success, and
increases the likelihood of subsequent attacks of the same kind.

Many threat models assume that threats are independent. We believe this is an unrealistic
simplification, since geographically oriented threats tend to occur in groups (e.g., power
outages, storm damage), as do intentional threats as noted above. Thus, to some extent,
either the Threat Model or the use of it should be stateful, although we will probably not
do this in the near future.

The Threat Model will be evolved as the perception of threats changes. This may occur
because of a change in the situation as defined by the Situation Model or by observation
of attacks and failures that differs from what is predicted by the Threat Model. For
example, the likelihood of physical loss of resources increases when at war or when a unit
is in transit. Alternatively, direct observation may lead to a change in the perceived
vulnerability to of attack, even though the underlying situation does not change. For
example, if several identical service instances fail in a short period of time, it may be wise

48

Appendix A-2

to assume that the probability of threats against all instances of that type (such as
programming errors or virus penetration) is greater than previously thought.

4.2.4 Situation Model

The Situation Model describes the real-world objectives to be met by the
applications/services in various situations. A situation might be unloading a ship,
launching a missile, or engaging in ground combat. For each situation, the Situation
Model records how critical a particular application or service activity is. This provides
objective functions that are used to rate the relative desirability of legitimate
configurations. A change in situation may cause a change in the relative values of
applications or services. For example, applications for managing the unloading of a
container and scheduling where the material gets stored become relatively less important
compared to an application for routing command messages to various consoles as conflict
(or its potential) intensifies.
Another use of the Situation Model is that it is used to vary the Threat Model in response
to changing situations. Depending on the situation, different threats may become more or
less likely.
It is our understanding that something akin to a Situation Model is already created and
maintained by the military for scheduling applications. There are several operational
modes, including "normal", and several kinds of "alert" modes. For each situation,
applications are assigned priorities that tell whether they must run, cannot run, or run if
resources allow. The decision on which mode to be in is made by an officer. The mode
to application matching is done well in advance and is a normal part of operations.
Applications are aborted manually by an operator according to the policy. There are
equivalent human actions as modes change, such as increased physical security, different
stations to man, canceling leaves, etc.

5. OSA Implementation Architecture

The OSA Survivability Model must be mappable to an OSA Implementation
Architecture. This means that every application architecture (and corresponding
instantiation) that is constructed using the survivability model must be able to be
instantiated in an OSA Implementation Architecture such as CORBA. This necessitates a
discussion of the key constructs at the implementation level architecture. Our goal is to
be able to map the Survivability Model to the three major OSA Implementation
Architectures: CORBA, Active-X, and Java. At this point, we have considered only
CORBA in any depth.

5.1 CORBA

Details of the CORBA object abstraction are well known. It is our intent to summarize
the key features in this section when time permits.

5.2 Active-X

TBD

49

Appendix A-2

5.3 Java

TBD

6. Mapping the OSA Survivability Model to OSA Implementations

6.1 CORBA

We have determined approximately how this mapping will be done. At present, we have
not actually implemented our design. It is our intent to document our current design as
time permits.

6.2 Active-X

TDB

6.3 Java

TBD

7. Current OSA Survivability Model Specifications

7.1 Resource Model

Obviously for each kind of resource, there is an issue of how much and what kind of
detail will be modeled. In general, more detail allows better fidelity to the real world and
possibly better decisions at the cost of additional model complexity. Additional detail is
useful only if it allows better decisions to be made. As a result, we will model each kind
of resource to only as many levels of abstraction as can be used by the Survivability
Service at any given point in its development.

Initially we will model all OSA services in the dependency graph of each simulated
application. The only kinds of physical resources we will model are computers, network
connections, and code images; there will be no composite physical resources considered.

The attributes to be modeled are driven by the attributes that can be used by the various
Client and Resource Brokers when determining if a given level of QoS can be provided
and how much to pay/charge for achieving that QoS. Since the initial version of the
decision process will be very abstract, we will model each resource as follows.

Global Collections:

ComputerResources : {Computer}

NetworkResources : {Network}

Repositories : {Repository}

50

Appendix A-2

Executables

ServiceTypes

Serviceslnstances

Servicelnstantiations

Servers

ServerGroups

{Executable}

{ServiceType}

{Serviceinstarice}

{Servicelnstantiation}

{Server}

{ServerGroup}

Simple Types:

PlatformTypes

ReplicationPolicies

ComputerQoSTags

NetworkQoSTags

ServiceQoSTags

Location

= enum(Solaris, Linux, WinNT, Win95, Mac)

= enum(voting, primary/n-backup, ...)

= enum(memory, processorCycles, disk)

= enum(bandwidth, latency, errorRate)

= enum(TBD)

= (x, y : int)

Instances:

Computer (
computerlD
name
platformType
location
memory
processorCycles
disk
availMemory
availCycles
availDisk
)

OID,
string,
PlatformTypes,
Location,
int, \\ in Mbytes
int, \\ in MIPS
int, \\ in Mbytes
int,
int,
int

51

Appendix A-2
Network (

networkID OID,
attachedComputers {Computer},
bridges {Network},
maxBandwidth int,
availBandwidth int,
latency int,
errorRate
)

int

Repository (
repositorylD OID,
location Computer
contains {Executable}

\\ connected networks

Executable (
executablelD
className
implements
runsOn
homeRepository
couldProvide

: OID,
string, \\ name of implementation class
ServiceType,
PlatformType,
Repository, \\ where the code lives
{ExecutableQoSAssertion}

ServiceType (
typelD
typeName
servicelnstances
implementedBy
)

OID,
string,
{Servicelnstance},
{Executable}

Servicelnstance (
servicelD
ServiceType
needsServices
instantiatedBy
)

OID,
ServiceType,
{QoSServiceSpec}, \\ services logically needed
Servicelnstantiation

Servicelnstantiation (
instantiationID
instantiates
doesProvide
)

{Abstract Class}
OID,
Servicelnstance
InstantiationQoSAssertion

Server : Servicelnstantiation (
code : Executable,
site : Computer

ServerGroup : Servicelnstantiation (
policy : ReplcationPolicies,
members : {Server}
)

52

Appendix A-2

ExecutableQoSAssertion (
executablelD
serviceQoS
needsComputer
needsNetwork
needsServices
)

OID,
P-list with unknown tags,
ComputerResourceSpec, \\ physical
NetworkResourceSpec, \\ physical
{ServiceQoSSpec} \\ needed by implementation

Note: this implies that each service instantiation reserves network resources to
deviler its OWN results at the required QoS. No consideration is given to
reserving network resources to deliver arguments to any services it may call. This
is a complication we will avoid for now.

InstantiationQoSAssertion (
servicelD
serviceQoS
needsComputer
needsNetwork
needsServices
)

OID,
P-List with unknown tags,
ComputerResourceSpec,
NetworkResourceSpec,
{ServiceQoSSpec} \\ regardless why needed

ComputerResourceSpec (
computerSpec

computerQoS

a predicate that resolves to a machine or
class of machines, e.g., "Machine4" or "WinNT"
P-List with tags in (memory, cycles, disk)

NetworkResourceSpec (
networkSpec

networkQoSSpec

a predicate that resolves to a network or
collection of networks, e.g., "Network3" or
"networks connecting Computerl and Computer^
or "Network with errorRate below 1/sec"
P-List with tags in (bandwidth, latency,
errorRate)

ServiceQoSSpec (
serviceSpec

serviceQoS

a predicate that resolves to a service
instance or collection of service instances,
e.g., "MapServerl", "any MapServer", or
"any MapServer with 1-minute maps of Texas
from surveys no more than 10 years old"
P-List with unknown tags,

An E-R diagram for this appears on the next page.

53

54

Appendix A-2

7.2 Failure/Attack Model

We have so far not defined the Failure/Attack Model in any depth. It is important to note
that the level of detail to be maintained for this model depends on the sophistication of its
two clients: the Survivability Service's Failure Detectors and Classifiers, and mechanisms
the Survivability Service uses to configure and reconfigure applications.

Our understanding of Failure Detectors is that they are likely to be able to detect only the
following kinds of failures other than ones reported by the service itself using exceptions:

• loss of site

• loss of service (other services at site still running)

• loss of access to site

• loss of access to service (can get to other services at site)

• degraded performance of site, service, or network (may not be able to differentiate)

• possible corruption of site or service (still providing some useable, but perhaps tainted

service)

Configuration and reconfiguration actions taken by the Survivability Service are limited
to choosing service instantiation coordination policies, assigning resources to
implementation object instantiations, and choosing which implementation object (and
classes) to use.

Both of these argue that the Failure/Attack Model should be at a fairly high level of
granularity, since neither of its clients operates at fine grain.

7.3 Threat Model

TBD

7.4 Situation Model

TBD

55

Appendix A-3

Evolution Model
for

Object Services Architectures

David L. Wells, David E. Langworthy, Thomas J. Bannon,
Nancy E. Wells, Venu Vasudevan

Object Services and Consulting, Inc.

Dallas, TX

{wells, del, bannon, nwells, venu}@objs.com

Abstract

This report describes extensions to the Object Services Architecture model that make it
possible to safely migrate a running application from one legitimate configuration into
another legitimate configuration. Both semantically identical and semantically similar
transformations are possible under this model, which allows applications to continue to
survive in degraded mode when system resources become unavailable due to attack or
failure. Legitimate transformations are determined based on the original application
service binding specifications as described in the Composition Model for OSAs and
mapping rules that define various possible transformations. From within the set of legal
evolution possibilities, a number of system and threat models are used to determine a
"good" transformation based on a malleable combination of predicted safety, best
performance, and lowest cost.

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory
under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Copyright 1997,1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided
this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of
the information in this document.

56

Appendix A-3

Table of Contents
58 1. Introduction

2. Overview of OSA Composition and Evolution 58

3. Evolution in the Survivability Object Abstraction 60

3.1. Time-Invariable Bindings 62

3.1.1. Implementation Object Instance Implementation Class 62

3.1.2. Implementation Object Instance Instantiation 63

3.1.3. Service Instance Type 63

3.2. Time-Variable Bindings 63

3.2.1. Implementation Classes Implementing an Interface Type 64

3.2.2. Host of an Implementation Object Instantiation 64

3.2.3. Implementation Object Instances in a Service Instance Instantiation 64

3.2.4. Coordinator of a Service Instance Instantiation 65

3.2.5. Service Instance Instantiation 66

3.2.6. Service Instance Bound to a Service Request 66

3.2.7. Service Instances Satisfying a Binding Request 67

3.2.8. Service Binding Requests by a Client 67

4. Reconfigurations in the Implementation OSA • 68

4.1.CORBA 68

4.2.Active-X 68

4.3. Java 68

5. Model Evolution 68

5.1. Resource Model 68

5.1.1. Removing Resources vy

5.1.2. Adding Resources uy

5.2. Failure/Attack Model • 70

5.3. Threat Model 70

5.4. Situation Model 72

57

Appendix A-3

1. Introduction

An OSA-based application consists of a collection of object services interacting across an
object bus. Not all possible configurations of OSA-based applications are equally robust,
nor are all configurations equally able to be reconfigured. A companion paper,
Composition Model for Object Services Architectures defines a subset of the possible
OSA configurations that is more survivable and that can be reconfigured into other
configurations in the feasible set. This paper defines legitimate evolutions of an OSA-
based application from one of these desirable configurations to another. While it hints at
the properties of "good" evolutions, detailed discussion of that topic is deferred to a
separate paper, Evolution Support Toolset for Object Services Architectures, that presents
an OSA Survivability Service that implements the models and chooses between
legitimate configurations and evolution alternatives.

The paper is organized as follows. Section 2 summarizes the relationship between the
OSA Composition and Evolution Models, and between our survivability object
abstraction and the object abstraction presented by an implementation ORB such as.
CORBA. Section 3 presents the various forms of evolution possible in the survivability
object abstraction. Section 4 defines how these abstract evolutions are realized as
concrete operations at the implementation ORB level. Section 5 describes how the
models used evolve to reflect changing circumstances.

2. Overview of OSA Composition and Evolution

The OSA Composition Model defines an object abstraction in which to create OSA-based
applications that are robust and are survivable through various forms of evolution.
Applications defined using the OSA Composition Model are reified using the object
model of an Implementation ORB such as CORBA. Mappings from constructs in the
OSA Composition Model to an Implementation ORB are defined by the OSA
Composition Model.

For a given application specification, there are potentially many reifications of it at both
the OSA Survivability level and the Implementation ORB level. Of course to execute the
application, one of these must be the one to be instantiated. This is done by the OSA
Survivability Service using the facilities of the Implementation ORB. Instantiation may
take place incrementally as an application progresses, and an application may relinquish
resources it no longer needs. Applications compete with each other for resources.

Sometimes, an instantiated application may be forced to involuntarily relinquish
resources before it is ready to do so. This may be because the resources themselves fail,
or because some other application's competing demands are judged to be more important.
In this case, the application must either be terminated, giving up all its resources and no
longer providing any service at all, or it must be evolved in some way to use resources
that are still available. It may be that after evolution, the application still provides the
same service, or it may provide a similar service with degraded functionality. If either
can be done, the application is called survivable.

58

Appendix A-3

Necessary and sufficient conditions for an application to be evolved are that there be
another instantiation of the application that uses currently available resources, and that
there be a state-preserving transformation from the existing instantiation to the proposed
instantiation. Determination of possible new instantiations is done using the OSA
Composition Model in exactly the same way as for the original instantiation, only using a
different set of available resources. However, the mere existence of a different possible
instantiation does not guarantee that it is legitimate. This is because work already done by
the application is encoded in changes to the abstract state of the various services
comprising the instantiation. Simply moving to a new instantiation that would have been
a legitimate initial instantiation loses that information and is thus not legitimate.

The object abstraction defined by the OSA Composition Model has been designed to
provide a number of "joints" where applications can be disassembled and reconfigured.
The OSA Evolution Model uses these joints as places to apply a number of
transformations. For each transformation, the OSA Evolution Model defines
preconditions that must be met in order for the transformation to be applicable. These
transformations not only construct a new instantiation of the application (usually an
incremental change from the previous instantiation), but define actions necessary to make
the abstract state of the various services compatible. These actions are performed at the
level of the Implementation ORB in response to decisions made by the Survivabihty
Service.
Just as the OSA Composition Model does not prescribe which of the legitimate
configurations is "best" for some purpose, the OSA Evolution Model does not prescribe
which evolution is "best" at some given time. The models have been designed to make
the choice of a "good" configuration or evolution tractable, but this choice is properly
outside the models1, since different circumstances and objectives will yield different
answers.
Each form of evolution has advantages and disadvantages. A given problem is potentially
solved by many different kinds of evolution, and for a given type of evolution, there will
typically be a set of legitimate possible outcomes. Determination of which alternative to
use is the responsibility of the Survivabihty Service. In general, any form of evolution
may be used by the Survivabihty Service to address any problem. In other words, there is
no exact match between some kind of resource loss or objective change and a particular
evolution action.
The following figure illustrates the relationship between the OSA Composition and
Evolution Models and between the survivable and implementation object abstractions.
The bold parts of the figure are those addressed by the OSA Evolution Model.

1 It is made by the Survivabihty Service, described separately.

59

Appendix A-3

Original Configuration
per

OSA Survivability Model

Evolved Configuration
per

OSA Survibability Model

Evolution in OSA Survivability Model

Original Configuration
in

OSA Implementation Arch

New Configuration
in

OSA Implementation Arch

Reconfiguration in OSA Implementation

3. Evolution in the Survivability Object Abstraction

The OSA Composition Model defines an object abstraction with a number of places
where evolution can take place. The figure below shows the object abstraction. Each
time varying relationship (shown in the figure by a dashed line) is a place where a
survivability transformation may take place. This section describes each of these "joints",

60

Appendix A-3
the kinds of transformations can take place each, and the preconditions that must be met
before a particular transformation can take place.

makes *—

leader—

- replicas *-

-satisfied by'

Service Binding
Requuest

bounci ► Service Instance

—instantiated by-

Service
Instantiation
Coordinator

coordinates *

implementation
objects *

Implementation
Object

Instance

instantiated by

Implementation
Object

Instantiation

-code-

_ service _
instance

yf Share N.

 ^ Common ^
\ Type /

have type

Interface Type

implemented by'

Implementation
Class

Kev
1-1

invariable

1-1
time variable

1-N*
invariable

1-N* _
time variable

61

Appendix A-3

A time-variable relationship can be changed after it has been made, whereas a time-
invariable relationship cannot. In principle, any relationship could be time-variable, but
this is often impractical, so some relationships end up being time-invariable. There are
two reasons why a relationship might be made time-invariable: a need for efficiency in
resolving the mapping defined by the relationship, and a need to ensure that state
dependencies caused by a particular mapping are not violated if the mapping changes. If
a mapping is time-invariable, it can effectively be cached and the perhaps complex
process of determining the initial binding can be avoided. As an example, consider the
difference in cost between a C++ and a CLOS method invocation. The need to preserve
state dependencies is a bit more complex. When objects interact, they often affect each
other's abstract state. This potentially mutual change of state is an encoding of the
messages sent using a particular mapping for the relationship. If this mapping is changed,
the states of all objects involved need to be reconciled. This includes objects in the
original mapping and those in the new mapping. Doing this reconciliation is non-trivial,
and may be impossible. Often, the places where this abstract state is concretely
represented is known only to the object implementations, and cannot be reconciled from
the outside. In any event, this reconciliation may be expensive and is not to be done
lightly. By forcing a relationship to be time-invariable, the need to be able to perform this
kind of reconciliation is eliminated.

The above discussion leads to two criteria that must be applied to changing time-variable
mappings: it must be relatively efficient to determine the current state of the mapping and
whether it has been changed, and there must be a way to reconcile mutual state for each
of the kinds of binding changes that may occur. Note that the latter does not require the
ability to do arbitrary reconciliation, since that is in general impossible. We sidestep this
by only allowing transformations where we know how to reconcile state.

We now examine the time-invariable and time-variable bindings in turn. Time-invariable
bindings are presented, even though they do not form part of the OSA Evolution Model,
in order to justify why they are not also time-variable.

3.1. Time-Invariable Bindings

The time-invariable bindings are:

• Implementation Object Instance Implementation Class

• Implementation Object Instance Instantiation

• Service Instance Type

3.1.1. Implementation Object Instance Implementation Class

Implementation ORBs all require that an object instance (in this case an implementation
object instance) always be of the implementation class under which it was instantiated.
This simplifies code management at that level and presumably makes loading and
initialization more efficient. Because this is buried deeply inside all Implementation

62

Appendix A-3
ORBs, we see no justification for attempting to change it. We achieve the important
ability to vary implementation class in other ways.

3.1.2. Implementation Object Instance Instantiation

The concept of an implementation object instance instantiation is a bit slippery because it
is not precisely defined at the level of the Implementation ORB. We take this to mean
that the mechanism by which an instantiation is launched is fixed. In CORBA at least,
this is embedded in a script registered with the Implementation Repository augmented by
information automatically provided when an object instance is created. This process is
too closed for us to want to try to modify it.

3.1.3. Service Instance Type

In principle, it would be desirable if a service instance could evolve its type or if a type
itself could evolve. We have not addressed this issue, because of the difficulty of the
problem and because the main thrust of survivability is the response to immediate
problems engendered by loss of resources, and not on solutions that require programming
effort.

3.2. Time-Variable Bindings

The time-variable bindings are:.

• Implementation Classes Implementing an Interface Type

• Host of an Implementation Object Instantiation

• Implementation Object Instances in a Service Instance Instantiation

• Coordinator of a Service Instance Instantiation

• Service Instance Instantiation

• Service Instance Bound to a Service Request

• Service Instances Satisfying a Binding Request

• Service Binding Requests by a Client
Transformations are presented from the "bottom up" in the model; i.e., transformations at
lower levels are presented first. We do this is because lower level transformations are the
most straightforward, generally cheapest to make, have the least impact on the
application, and are therefore most frequently used.
All of these transformations allow the Survivability Service to do one of two basic things:
to vary the way in which a service instance is instantiated, and to change the service
instance to which a client is bound. They should be considered in light of those two
higher level objectives.

63

Appendix A-3

3.2.1. Implementation Classes Implementing an Interface Type

New implementation classes can be added at will by simply registering them with the
Resource Model and storing them appropriately. They can then be used when
constructing new implementation objects. No reconciliation of state is required.

Implementation classes may be removed. This is likely to be done if either their code is
lost or if the Survivability Service decides that it no longer trusts a particular
implementation class. In the event that an implementation class is no longer available,
none of the implementation object instances using that class can be instantiated. This
may affect the ability to instantiate a service instance, depending on whether or not there
are other implementation objects that can be used to instantiate it, and whether its state is
stored somewhere else.

3.2.2. Host of an Implementation Object Instantiation

One way to vary a service instantiation is to change where its implementation object
instances get instantiated. This does not change which implementation object instances
are used, just where they are instantiated. This is an important distinction, because
implementation objects are presumed to know how to create (or restore from persistent
storage) their own concrete state, whereas if new implementation object instances were
used, it would be the responsibility of the Survivability Service to initialize them
property.

No reconciliation should be necessary if the location of the instantiation changes,
although the implementation object may need to be more careful when restoring its state,
since it cannot use default locations to find its state since it does not know where it will
be instantiated.

Java certainly supports object portability. We believe that we can get a hook to allow the
object to be instantiated on variable machines in CORBA, but have not yet tried it, so we
don't know for certain.

3.2.3. Implementation Object Instances in a Service Instance Instantiation

In addition to changing where implementation objects are instantiated, it is possible to
change the actual set of implementation objects used in a service instantiation. Two
kinds of changes can be made: the number of implementation instances may be increased
or decreased, or different (possibly newly created) implementation objects of different
implementation classes can be used. Both kinds of transformations allow tailoring the
service instantiation's performance and reliability. Having the implementation objects of
different implementation classes increases robustness. Geographic distribution may
increase or decrease reliability and performance depending on the coordination policy and
the message traffic.

No reconciliation of client state is required, because this transformation is entirely
transparent to the client. The service instance coordinator must be informed of the
change in the implementation object instance set.

64

Appendix A-3

When an instance is added, the coordinator must bring the new implementation
instance(s) up to a state consistent with the pre-existing implementation objects. There
are two ways that this is usually done by coordinators, one (at least) of which must be
supported: state transfer, and message replay2. State transfer is possible if at least one of
the implementation instances that is up to date can externalize its state into a form that
can be internalized by the new instance. This requires both a common external form and
a pair of externalization/internalization functions in the implementation classes beyond
what is required to implement the interface type. This approach is not universally
applicable; in particular, if the concrete states of the two classes are very different, it
might not be possible to define a mapping. An alternative is for the coordinator to
initialize the new instance to some known state and replay to it the message traffic that
has been sent to existing instances, thus allowing the new implementation instance to
"catch up". This is only feasible if the message log is maintained far enough back that it
meets the state to which the new instance can be initialized. Often this technique is
augmented by checkpointing state occasionally. If both techniques are implemented, the
coordinator can choose. Considerations in making this choice are the size of internal
state and the length of message log that must be kept.
If an implementation object instance is to be removed, there must remain a sufficient set
of implementation objects to meet the requirements of the service instance instantiation.
This means sufficient abstract state to be functionally complete, and enough
implementation objects instances to satisfy the coordination policy and provide sufficient
QoS. While not an absolute requirement, it is preferable that the remaining set of
instances support the addition of new instances at some future point. In particular, if an
instance must be removed, it should not be the only one that knows how to externalize its
state.

3.2.4. Coordinator of a Service Instance Instantiation

The coordinator of a service instance instantiation can be changed. There are several
reasons why this may be necessary:
• the number of implementation objects may change sufficiently that either a new

policy is needed (e.g., voting is no longer possible) or the existing policy becomes
unacceptably inefficient,

• message traffic changes enough that a different coordination policy becomes more
efficient (e.g., the ratio of reads to writes changes), or

• the threat situation changes enough that the existing coordination policy does not
mask the threats (e.g., network partitions become so likely that certain kinds of voting
are never able to achieve a quorum)

No reconciliation with the client is required, since this transformation is transparent to the
client. A safe (and probably the only) way to ensure consistency among the

2 State transfer is applicable only if the intent is to make the abstract state of the new instance match that of
an existing instance. This would be the case for replication-based high availability services, but would not
be for other coordination patterns such as data partitioning.

65

Appendix A-3

implementation instances during this transition is to temporarily block messages from the
client until all internal messages to the implementation objects have been acknowledged
and the implementation objects reach a mutually consistent state. This blockage may be
unacceptable to the client, depending on its QoS requirements; if so, coordinator change
is not possible at that time.

3.2.5. Service Instance Instantiation

Service instances need not be instantiated unless currently bound . When reinstantiated,
the new instantiation may be treated as either the same as the previous one (same OID at
some level) or unrelated. The binding embedded into the client will reflect the current
OID.

Since this is a new binding to a client, no reconciliation anywhere is required.

3.2.6. Service Instance Bound to a Service Request

A given service binding request may be satisfied by many service instances (see also
section 3.2.7). Only one of these can be bound at any given time, but this binding can be
changed under certain circumstances. In order to change such a binding, the client and
new service instance must be synchronized to a mutually consistent state. In addition, the
old service instance must be reconciled to the fact that it is no longer bound to the client.
These present two different problems.

Reconciling the client and the new service instance means that the client must be able to
handle responses from the new service instance. This does not necessarily mean that the
client cannot tell the difference, although that is a desirable outcome. There are three
cases, one of which must hold for a service instance to be rebound:

• the new service instance can be brought to a state compatible with the state of the old
service instance,

• the client does not maintain state of the previous message traffic with the service, or

• the client can compensate for differences in mutual state.

We now consider generally applicable methods for achieving these conditions. Custom
solutions are also possible, but are beyond our consideration.

There are three ways in which a new service instance state can be made consistent with
the old service instance state:

• A stateless service achieves this condition vacuously.

• Message traffic to the old service instance can be maintained by the Survivability
Service and replayed to the new service instance if some common staring point can be
determined. Static initialization or initialization from a common persistent state
would suffice. The message traffic must include messages from all clients, since this

3 This allows reclamation of resources not actively required. On the other hand, a service instance may be
instantiated all the time. This will typically be the case if initialization is time consuming, they are
frequently bound for short periods, or their potential clients need very fast response.

66

Appendix A-3
is a way for interaction to occur. Care must be taken to avoid illegitimate transfer of
information when doing this playback, so some security concerns hold.

• State can be transferred from the old service to the new service. It is not clear what
the advantage would be of this, since it implies that the original service instance was
still functioning. State transfer to a different implementation object instance (see
3.2.3) would accomplish the same without requiring service rebinding. This is,
however, an option.

Stateless clients are quite possible for such things as signal processing or video display.
Care must be taken to ensure that clients of that client do not receive the state.

Client compensation is necessarily client-specific.
Declarations of these conditions must be made part of the service specification (for both
the client and service) in order for rebindings to be made and the appropriate technique to
be applied.
Reconciling the old service to the loss of its client involves freeing resources and possibly
reverting the service instance to a consistent state (it may have been left in an inconsistent
state by client interactions that never completed). Reclamation of resources occurs
naturally in some ORBs when an implementation object is not used for some length of
time In the event that the ORB does not perform this automatically or the resources in
question are not allowed to be automatically released, the Survivability Service can
manually request their release by the ORB.
Restoration of consistent state appears to be much like database transactions. From this,
it would appear that the ability to wrap a stream of client messages in a transactional
framework, with the Survivability Service having the ability to issue an "abort" if the
binding is broken would be very useful. We have not considered the details.

3.2.7. Service Instances Satisfying a Binding Request

The set of service instances that advertise that they can satisfy a binding request varies
continuously. This set need be computed only when a change in the service binding is
contemplated. No reconciliation is required, since this just represents a set of possible
choices from which to bind.

3.2.8. Service Binding Requests by a Client

For any given service needed by a client, the client may issue alternative service binding
requests. These are independent binding requests for services that are perceptibly
different to the client. Typically such requests are for the same kind of service at
diminishing (or at least different) levels of QoS. A client will generally have preferences
amon* these requests, accepting less desirable bindings only if this is all that is possible.
As such, these binding request alternatives differ from a single service binding request
that identifies many service instances; the latter identifies service instances that appear
the same to the client, while the former identifies service instances that appear different to
the client.

67

Appendix A-3

Such a change cannot be hidden from the client, and it is therefore the client's
responsibility to compensate for the change. This will necessarily be client-specific, and
poses the same set of issues as rebinding a service within a single service binding request
(section 3.2.6). As in that transformation, it may be possible to synchronize client and
service or it may be impossible. However, in all cases, the client must be able to handle
the reduced QoS. This may be simple, as in a display routine, or may be more complex.

4. Reconfigurations in the Implementation OSA

Evolutions made within the survivability abstraction must be implemented by actions
within and supported by the underlying Implementation ORB. In the Implementation
ORB, far fewer facilities exist for evolution than at the higher level. This has two
consequences. First, a single operation in the survivability abstraction will typically be
implemented by several actions in the implementation ORB. Second, there will be no
obvious relationship between the "before" and "after" configurations as seen from the
implementation ORB's perspective; all such information is embodied in the survivability
abstraction.

This section defines the actions that are taken in the implementation ORB to implement
the various evolutions described in the previous section. There are three principal
implementation ORBs, CORBA, Active-X, and Java. These are discussed separately.

So far, we have done an approximate mapping only to CORBA. Active-X is similar
enough that the mapping should be similar. Java has different strengths and weaknesses,
but we are convinced that a mapping to Java will also be possible.

4.1. CORBA

Details of this mapping will be provided in a subsequent report.

4.2. Active-X

TBD

4.3. Java

TBD

5. Model Evolution

In addition to evolution of an application, the models maintained in support of
composition and evolution may also be evolved to reflect differing goals or
understandings of system state. The kinds of evolution of these models that are likely are
described here in brief. All changes to the models are made by (or through) the
Survivability Service.

5.1. Resource Model

Changes in the resource pool are reflected in the Resource Model. Changes to the
resource pool may force a reconfiguration or may change the reconfiguration choices

68

Appendix A-3

available to the Survivability Service. In general, resources may be added or removed,
but the focus of survivability is generally on compensating for diminished resources.

5.1.1. Removing Resources

Resources may be removed from the resource pool because:

• they fail to perform properly, either by failing to respond, producing incorrect results,
or by providing a lowered QoS, or

• they are deemed untrustworthy because attacks on, or failures of, similar resources
lead to a belief that these resources are likely to fail or succumb to compromise in the
future.

Resources that are reassigned away from an application or service because they are
needed elsewhere, or that become inaccessible without themselves failing are not lost.
Such changes are not reflected in changes to the Resource Model.
Failure of individual resources is detected by the Survivability Service's Failure Detectors
and Classifiers. This may involve a considerable time lag and is not always accurate. For
example, a resource may be assumed to be lost when it is only temporarily unreachable
due to a misclassification. Because of these potential inaccuracies, there must be
feedback loops within the Survivability Service to ensure that a planned action (based on
the model) is actually able to be carried out. Resource loss can also be manually reported.

Resources can also be removed from use because they are suspected of being unreliable,
even though they have not yet failed. This, of course, will not be a decision made by the
Failure Detectors and Classifiers, since the resource in question has not actually failed.
Instead, the Survivability Service examines the revised Threat Model, and decides
whether it should remove a particular resource based on the estimated likelihood that it
will fail or succumb to attack in the future. The kinds of resources that are likely to be
removed in this way are those that have some common property. An example would be
all implementation objects based on a (believed to be) compromised implementation
class, or all instantiations on a particular machine. Resources may be speculatively
removed from consideration when their use might cause damage in some way, for
example by compromising data, causing a service using them to fail at some critical
moment, or because they are so unreliable that the cost of using them exceeds the benefit
gained.
Speculatively removed resources can be absolutely removed or can be marked in some
way so that they are used only as a last resort. In the current implementation of the
Survivability Service, it makes most sense to absolutely remove dangerous resources and
to place a low value on the use of unstable resources and allow the Market to denigrate
their use except in dire circumstances.

5.1.2. Adding Resources

Resources may be added at any time as well, although the general assumption for
survivability is that this will be infrequent and will be limited to only certain kinds of
resources As such, the OSA Evolution Model does not provide support for activities

69

Appendix A-3

such as software development that are unlikely to occur when a system is under attack.
However, the fruits of such development can be used, as long as they appear as a ready
resource of a type already familiar to the Survivability Service.

Any physical resource can be added at any time. A very common occurrence is that a
previously failed resource will become available again; e.g., a host fails and reboots, or
communication with a mobile host is restored.

Implementation objects are routinely instantiated when they are touched. New
implementation object instances can be created at any time by the Survivability Service.

Implementation classes, interface types, and coordinators are much less likely to be
added, since they cannot be created automatically by the Survivability Service and
generally require programming effort to create. Similarly, service instances are
infrequently created, since this requires knowledge of why they are being created and
what their initial abstract state should be, which is again a human activity normally
outside the scope of survivability.

5.2. Failure/Attack Model

The Failure/Attack Model is changed very infrequently and only by human intervention to
redefine failures or attacks or to define new ones.

5.3. Threat Model

The purpose of the Threat Model is predictive: to avoid configurations that are likely to
become bad, and to aid in failure diagnosis. The Threat Model changes when one of two
things happens:

• a new failure or attack is determined to exist, or

• the perceived likelihood of an existing threat changes.

The entry of new threats is discussed in Composition Model for Object Services
Architectures and is not discussed further here.

The perceived likelihood of threats can change because either:

• the real-world situation changes, making particular threats more or less likely, or

• analysis of past attacks/failures indicate that the threat model was incorrect.

Changes to the Threat Model based on changes in the real world are embodied in the
definition of the Situation Model. It is not clear whether the Situation Model should
define threat likelihood explicitly for given situations, or provide a more abstract
definition that is used to bias the computation of threat likelihoods.

Modifications to the Threat Model based on analysis of attacks/failures are more
complex. They start with the detection of symptoms of problems detected by Failure
Detectors. These symptoms are events that can be directly observed by a detector, such
as a service that has not responded within a certain amount of time, an error rate that has
reached some threshold, etc. From this, the Failure Classifier attempts to determine

70

"1
Appendix A-3

which resource(s) have failed and in what mode4. At this point, a failed resource is
identified, but in general, the cause of the failure is not known. Misclassification of
failure mode or even of which resource failed are possible, and may be common.
Classifiers may choose a broader failure mode than is actually the case (e.g., report node
failure when the problem is actually the failure of some service at the node), or report an
error in a resource when the actual error is upstream (e.g., report a host failed when the
problem is in the network).
At this point, it is known (with potential for error) which resource is no longer adding
value; this may cause the resource to be replaced. This is the point where the Resource
Model is modified, but as yet, no changes occur to the Threat Model.

The underlying cause of resource failures are what we term attacks/failures5. The next
step is to attempt to determine which attack/failure caused the resource to fail. This is
generally a time consuming, off-line process that requires human involvement; e.g.,
through something like CERT. It may be very straightforward, however, such as a report
of a bombing or the cutting of a wire with a backhoe6. Most difficult to determine are
attacks/failures that can affect multiple resources, since the correlation of failures of
individual resources into the underlying patterns is difficult and usually requires rather
lengthy event logs, which of course also contain totally unrelated events.

Regardless of how the determination of an attack/failure is made, the next step is to
decide if this should cause a change in the Threat Model. The Threat Model predicts how
frequent a failure type should be. It is only when observed failures deviate from this by a
significant amount that the Threat Model should change. We cannot be too precise about
what this means at present because we are not sure how to describe threat likelihoods for
various kinds of threats. For more discussion of this, see Composition Model for Object
Rorviros Architectures, section 4.2.2. As an example, likelihood of hardware failures is
probably couched in terms of a mean time between failures provided by the manufacturer,
while likelihood of a virus attack is a more subjective value. Modifications to MTBF
may be made because of a hostile physical environment and can be based on direct
observation or an informed estimate based on similar hardware in similar environments.
Modifications to the likelihood of a virus attack are much more complicated. The initial
estimate is probably based on such factors as software development rigor, sources from
which downloads are accepted, and virus screening performed, without any knowledge of
whether a virus attack on the particular software actually exists. Once a virus attack
against the particular software has been detected, the likelihood estimate changes
radically, since an attack can be made whenever desired by the possessor of the virus,
assuming it is not screened out by download restrictions or virus screening.

4 See mn.pn^ifm Model for OSAs. section 4.2.1 for a discussion of failure modes. Basically, it is the type
of failure from a predefined set.
5 We need a better terminology here, since the word "failure" is used for both the failure of a resource and
its underlying cause.
6 In principle it would be desirable to be able to infer causes of failures by correlating resource failures with
the set of attack/failures that could have caused them to determine patterns. This is outside of our scope,
and in any event is likely to yield only suggestions to a human analyst.

71

Appendix A-3

One possible way of modifying the Threat Model is to increase the likelihood estimate by
a small amount every time an attack/ failure is detected and reduce it periodically if
nothing occurs. We don't know if an adaptive approach like this is reasonable, but it
appears worth investigating if no better method is found.

5.4. Situation Model

The Situation Model is changed very infrequently and only by human intervention to
redefine situations or to define new ones.

72

Appendix A-4

OSA Survivability Service

David L. Wells and David E. Langworthy

Object Services and Consulting, Inc.

Dallas, TX

{wells, del} @objs.com

Abstract

This report describes the architecture of an OSA Survivability Service that uses the OSA
Composition Model to initially configure OSA-based applications and reconfigures them
for survivability using the OSA Evolution Model. The Survivability Service uses a single
set of system models and specifications for both purposes. The Survivability Service is
compatible with existing work in failure detection and classification, fault tolerance, and
highly available systems. Both the internal architecture of the Survivability Service and
its connections to external services are described. Portions of the Survivability Service
are being prototyped as part of this project.

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory
under contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the United States Government.

© Coovright 1997 1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided
this copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of

the information in this document.

73

Appendix A-4

Table of Contents

1. Introduction 75

2. Survivability Service Overview 76

2.1. Context and Operation 76

2.2. Unifying Approaches to Survivability 79

3. Enhanced Binding Service 81

3.1. Survivable Object Abstraction 82

3.2. EBS Connections to Implementation ORBs 83

4. Survivability Management Service 84

4.1. Resources, Services, and Threats 84

4.2. Design 85

4.3. Issues any SMS design must deal with 85

4.4. SMS Market 85

4.5. Issues specific to a market based SMS 86

4.6. Auction Protocol 87

5. Models 88

5.1. Resource Model 88

5.2. Threat Model 88

5.3. Service Model 90

5.4. Situation Model 90

5.5. Using the Models 91

5.6. Model Refinement 91

6. External Components 92

6.1. The Implementation ORB 92

6.2. Failure Detectors & Performance Monitors 92

7. Related Work 94

7.1. MARX 94

7.2. AQuA 94

7.3. SMARTS InCharge 95

74

Appendix A-4

1. Introduction
Our goal in the design of the Survivability Architecture is to take system integrity to the
next level. Fault tolerance enabled reliable data storage. High availability enabled
reliable on-line processing. These technologies ensure islands of availability.
Survivability enables reliable service delivery. The focus moves from hardening
individual components to ensuring that every client has access to the services it requires.
The Survivability Architecture seeks to provide continuity over discrete highly available
systems though extensions to an object service architecture.

Consider planning a sortie for a regional conflict in which there are multiple coalition
partners. Mission planning requires many resources, among them a map server. Assume
the local map server becomes unavailable. The backup map server is located at a remote
location and reachable only over slow communication lines. There is a coalition map
server available with good performance characteristics, but while this service is signature
compatible, its data is considered to be of lower quality and the labels are specified in a
foreign language. Existing OSA implementations cannot switch an active connection and
are limited to exact substitutes for a service. A survivable OSA needs to be able to
switch compatible services in an established connection and substitute acceptable
alternatives.
The ability to substitute services does not in itself elevate an OSA to a survivable OSA.
Consider an information warfare attack which focused on NT machines. As the NT
machines began to fail, essential processing must be moved over to UNIX machines.
This in turn requires terminating or delaying non essential processing on those machines.
This particular adaptation would not be difficult to implement in an ad hoc manner.
However, there are many different threats, each with their own optimal response, and
more than one threat may materialize at the same time. A survivable OSA must be able
to dynamically adapt to the threats in its environment to reallocate essential processing to
the most robust resources.
The remainder of the paper is organized as follows. Section 2 presents an overview of
the Survivability Service, including the context in which it is intended to be used, its
internal organization and major components, and external services it relies upon.
Sections 3-5 describe the Survivability Service's major components (Enhanced Binding
Service, Survivability Management Service, and Models) in more depth. Section 6
discusses Related Work. Two other reports produced by this project, Composition Model
for Object Services Architectures and Evolution Model for Object Services Architectures,
should be read before reading this paper. Many of the terms used in this paper are
defined in those reports and are not redefined here.
The Survivability Service is still very much a work-in-progress. As such, some portions
of the design are still underspecified and it is expected that the design will evolve as we
gain implementation experience over the next year. Portions of the system have been
prototyped. Even by the end of the project we will not have implemented our entire
design due to resource limitations.

75

Appendix A-4

2. Survivability Service Overview
This section discusses the general context in which the Survivability Service is intended
to operate, its internal organization, the kinds of survivability actions that are combined
in our system, and how the Survivability Service uses a higher level object abstraction in
which survivable configurations are specified and maintained.

2.1. Context and Operation

The Survivability Service creates and evolves "legitimate" survivable service and
application configurations. Legitimate configurations are defined in a survivable OSA
object abstraction defined in Composition Model for Object Services Architectures and
Evolution Model for Object Services Architectures. In addition, the Survivability Service
can provide full benefit only to applications specified in the survivable OSA abstraction
in environments where resource, threat, and situation modeling has been done. Without
these, the full range of survivability actions is not possible and the allocation and
placement decisions cannot be made sufficiently accurate to assure non-brittle
configurations.

The environment in which the Survivability service operates is shown in the figure
below.

Survivability Service

failure notification
& classification

Failure Detectors &
Performance Monitors

desired actions-

exception messages
& probe results

exception messages
& probe results

actions to
modify system

Monitored System messaging-

Implementation ORB

Actuators

Runtime

Figure: Context of the Survivability Service

76

Appendix A-4
The monitored system consists of a collection of objects interacting across a conventional
implementation ORB. The objects in the monitored system are specified in a basic OSA
abstraction, which does little or nothing to provide survivability. The objects may be
organized into a number of independently developed (and hence non-cooperating)
applications. As a consequence, objects and applications at the level of the monitored
system cannot properly provide for their own survival because there need not be an
overarching design for them and certainly no global coordination.
The implementation ORB provides the infrastructure on which the monitored system
executes. This includes facilities for storing object interface definitions and
implementations, locating and binding objects, activating and deactivating objects, and
delivering messages and returning results. The object abstraction presented by the
implementation ORB and the implementation ORB itself have severe limitations that
make it difficult to build survivable services and applications directly at this level.

The monitored system is subject to attacks against its objects that may cause them to fail
to perform as specified in a variety of ways, including crashes, degraded performance,
denial of service and disconnection, or Byzantine failures. The attacks may be malicious
or accidental. Objects may be attacked by attacking any of the resources they use,
including their code, state (runtime or persistent), or physical resources (e.g., CPU cycles,
disk, network access).
Failure detectors and performance monitors observe the monitored system to detect
deviations from desired behavior. They do their best to identify that an object has failed,
the mode of the object's failure (how it failed), which resources caused the object to fail,
and the underlying cause of the failure (which attack caused the failure). Detection and
categorization is by no means complete, precise, accurate, or timely. Failures may be
undetected or may not be detected until some significant time after they occurred. The
failure mode may be misclassified (hopefully too broadly but not incorrectly) and details
of which resources failed may be unknown. Except when failures have obvious causes
(e g the building containing a machine was bombed) it is unlikely that the underlying
cause of the failure will be known until much later, if ever. This will be especially true in
intentional software attacks, in which identification may require consultation with a
CERT-like organization.
The Survivability Service maintains information about:

• the current state of the monitored system (as reported by the monitors and hence not
necessarily accurate),

• configuration and survivability objectives,

• estimates of the threat of various kinds of attacks, and

• the kinds of reconfigurations that can be implemented using the capabilities of the
implementation ORB under which the monitored system is running.

Using this information, the Survivability Service determines actions to take to move the
existing configuration of the monitored system toward a more desirable configuration.
The Survivability Service then issues commands to the implementation ORB in order to
carry out those actions. If these actions fail, the Survivability Service will either receive
a report from the implementation ORB or will rely on the failure monitors.

77

Appendix A-4

The internal organization of the Survivability Service is shown below.

Survivability Service

Enhanced Binding Service

Determine Feasible
Configurations & Evolutions

Issue Reconfiguration Commands
to Implementation ORB 1 '

Models

Resources
Threats
Services
Sitation

Fesabile & Selected Configurations

Survivability Management
Servce

Determine "Good" Configurations

Failure
Reports Commands

Failure Detectors Implementation ORB

Figure: Survivability Service Internal Organization

The Enhanced Binding Service (EBS) opens up the standard OSA object abstraction to
provide more alternatives for reorganizing clients and services and provides the
mechanisms to perform the reorganizations. The Survivability Management Service
(SMS) selects desirable configurations from among those enabled by the EBS and
informs the EBS, which then uses the facilities of the implementation ORB to perform
the actual reorganization. Models contain the information used by the EBS and SMS to
determine feasible and desirable configurations and evolutions.

78

Appendix A-4

2.2. Unifying Approaches to Survivability

Survivability is achieved by combining many separate techniques, each of which is most
appropriate in a different situation. Robust and efficient survivability requires the
following capabilities, arranged roughly in a hierarchy:

Basic Process Control: The ability to start, stop and restart processes, to clean up after
failed or aborted processes, and to restore processes to known states. Most of this is
provided by implementation ORBs.

Fault Tolerant Services: These are services designed to (usually) fail in known "good"
ways. Their failure modes become part of the service specification. This must be
provided by the service developers.

Failure Detection & Classification: These mechanisms detect the symptoms of failures
and attacks, and classify the events into likely failure categories. This can be done
through probes, wrappers, or exception reports from well-behaved services. Classifying
observed symptoms into error categories is at least partially based on the failure mode
specifications of the fault tolerant services. Failure detectors are an external component
relied upon by the Survivability Service. We are not working in this area, and will either
obtain these mechanisms from elsewhere or assume an oracle for demonstration
purposes.
High Service Availability: These are a collection of mechanisms to make individual
service instances much more highly available than they would otherwise be. Techniques
are either based on replication or hierarchical masking (i.e., error handling in the client).
We concentrate on using replication-based policies since they do not rely on the
semantics of the services and are therefore more widely applicable. Many replication-
based policies exist (e.g., voting, hot backup, error correction) and some are integrated
with ORBs (e.g., Electra, Eternity, and the late Orbix+Isis). These mechanisms must be
efficient since they are invoked during normal (non-error) operation. At this level, it
becomes possible to physically reconfigure an application by changing the way
individual services are implemented. The logical organization remains fixed in that
clients still interact with the same services after any reconfiguration. We assume that the
implementation ORB will provide these capabilities, since they are showing up in
research systems and will eventually migrate into products, either as part of the ORB or
as attached CORBA services. We refer to ORBs with these capabilities as fault tolerant

ORBS.
Availability Management: This layer manages the use of the High Service Availability
mechanisms. It determines the appropriate fault tolerance mechanism to use for a given
service based on service failure modes and perceived threats, and determines the resource
pool needed to achieve desired availability. It can be less efficient than the lower layers
since its use is infrequent or can be a background activity. This functionality is provided
by the Survivability Service.

Service Renegotiation: At this level, it becomes possible to change the logical
organization of an application by binding clients to alternate services if the desired
service should become unavailable or degrades in performance. The rebinding can be to
an equivalent, but distinct service (e.g., a different server having the same maps), or to a
similar, but acceptable service (e.g., a different server with maps of the same area but at

79

Appendix A-4

lower resolution). Alternatively, the same service connection can be maintained but at a
lower quality of service (e.g., more errors or slower). This is semantically more
sophisticated than lower layers and requires specifications of client-service connections
beyond those currently used in OSAs. In addition to allowing rebinding to service
alternatives when services fail, service renegotiation can represent a fallback position if
the costs of assuring service availability become unacceptably high. This functionality is
provided by the Survivability Service.

The capabilities supplied by the implementation ORB and the various parts of the
Survivability Service are summarized in the following table.

Fault Tolerant
Implementation ORB

Survivability Service

Basic ORB High Avail
Services

Availability
Management

Service
Renegotiation

Service Instantiation
Type Choice

Constant Static Dynamic

Service Startup Manual &
On Open

On Failure

Server Replicas
per Service

1 N w/ Fixed
Membership

N w/ Variable
Membership

Replication Policies 0 Fixed Selectable

Logical Connectivity Fixed Variable &
Flexible

Model & Decision
Sophistication

Path Completion Resource Model Semantic Models

Mode of
Survivability Actions

None Reactive Proactive

QoS None Fixed Degradable

Figure: Locus of Survivability Actions

The Survivability Service provides both Availability Management and Service
(Re)Negotiation. Both the Enhanced Binding Service and the Survivability Management
Service components of the Survivability Service are required in the provision of each of
these types of survivability actions. This is shown by the figure below.

80

Appendix A-4

Survivabilitv Service

Enhanced Bindina
Service

Service Renegtiation

Survivabilitv Management
Service

Availabilit' Management

Figure: Mapping Levels of Survivability to the Survivability Service Components

To date, we have concentrated on the survivable object abstraction, the high level
organization of the Survivability Service, and mechanisms for providing availability
management. Our detailed architecture and prototyping have focused on the
Survivability Management Service aspects of availability management (this corresponds
to the lower right quadrant of the above figure). In the next year, we will devote most of
our effort to service renegotiation, and will sketch how the EBS supports availability
management. The latter appears straightforward.

3. Enhanced Binding Service
As noted previously, the basic OSA abstraction defined by implementation ORBs is
insufficient for the specification and maintenance of survivable systems. Aside from a
number of ambiguities, there simply is not enough flexibility in how systems are
configured or reconfigured. In particular, reconfiguration of a running system in the
event of failure receives no support from standard ORBs. Fault tolerant ORBs add some
reconfiguration ability, but it is limited to the management of replicas of individual
services. The required flexibility is added by the EBS, which:

• defines a survivable OSA abstraction in which a wide variety of survivable
configurations can be defined and maintained,

• uses resource models and enhanced binding specifications (part of the survivable
OSA abstraction) to determine feasible configurations and evolutions of existing
configurations,

• provides the Survivability Management Service (SMS) component information about
feasible configurations and evolutions and accepts back the SMS's determination of
the desired new configuration, and

• issues commands to the implementation ORB to create the desired new configuration.

81

Appendix A-4

3.1. Survivable Object Abstraction

To overcome limitations of the standard OSA object abstraction, we have designed a
survivable OSA abstraction (below) in which a wide variety of survivable configurations
can be defined and maintained. The specified configurations are implemented using the
basic OSA abstraction and capabilities provided by some underlying "implementation
ORB" such as CORBA.

Service Binding
Requuest

-satisfied by *-

-bound- Service Instance

instantiated by-

■ service _
instance"

-replicas *-

implementation
objects*

Implementation
Object

Instance

have type

Interface Type

instantiated by
implemented by *

Implementation
Object

Instantiation
-code- Implementation

Class

to

invariable

1-1
time variable

1-N* —► invariable

1-N*
time variable —►

Figure: Survivable OSA Abstraction

The purpose of the survivable OSA abstraction is threefold:

• it clarifies some ambiguities in the basic OSA abstraction,

• it adds constructs to make it easier for programmers to specify survivable object
configurations (and more difficult to specify non-survivable ones), and

• services and applications specified using it can be managed for survivability by a
Survivability Service.

82

Appendix A-4
The survivable OS A abstraction defines several kinds of logical and physical entities,
including abstractions such as services, instantiations of servers that implement the
services, code images for the servers, and physical resources such as hosts and networks.
A variety of relationships are defined between entities of these types. Most of the
relationships can change and many have arbitrary cardinality. The Survivability Service
manages these entities and relationships, creating, changing, and destroying them as
necessary to create and maintain "good" configurations. The entities and relationships
are defined in rnmpn.dtion Mod* fnr Ohiect Services Architectures; changes to them are
defined in Evolution Model fnr Ohiect Services Architectures.

3.2. EBS Connections to Implementation ORBs

The EBS interacts with the implementation ORB at two levels: to implement availability
management and to implement service renegotiation. The mechanisms at these two
levels are not thoroughly designed yet, but are expected to take the following form:

Ability management requires starting and stopping CORB;A-^ ^^
appropriate locations with appropriate resources as dictated by the SMS. All relevant
ORB hooks appear to be provided by CORBA Naming Service, Implementation
Repository, and Loaders.
Clients must also be capable of being rebound to logically equivalent CORAB-level
services This does not require any synchronization, but does require the binding to be
changed. This should be doable either by a level of indirection or by a modification to
the client-side dispatch mechanism. In addition, the EBS must be able to inform the SMS
which physical resources and CORBA-level services can be used to satisfy a particular
request This is embedded in the resource model, the details of which are not yet fixed.
Note that at this level, service alternatives are not considered; it is assumed that the
service instance to be bound was either stated explicitly by a client or was determined at
the service renegotiation level of the Survivability Service. All relevant ORB hooks
appear to be provided by CORBA Naming Service, Loaders, ORB interceptors, compiler-
generated client stubs, and the open() binding call.
Servil renegotiation allows alternate service instances to be specified and bound. Since
the standard open() command in CORBA does not support this, we will have to extend
that interface or provide an alternative. The OMG Trader interface is an obvious place to
hang the required functionality, but the Trader specification mostly addresses how to
utter such a request rather than "what" such a request should contain. The vocabulary
and interpretation of the enhanced binding request needs to be determined. Some sort of
"matching" capability is also required to determine exact and approximate matches. The
better this matcher is, the more configuration choices are available.
Service renegotiation also requires the ability to change the logical service to which a
client is bound. This will frequently require a synchronization of client and service state.
There are a variety of ways this can be done, including message replay. A useful
optimization can be made if meta data indicates that a connection is known to be
stateless, in which case synchronization, and its associated overhead, can be avoided.
Actually changing the binding should be able to use the same physical mechanisms as
used to change bindings for availability management.

83

Appendix A-4

4. Survivability Management Service
The Survivability Management Service (SMS), maintains a balance between resources
and demands as both dynamically change. The SMS guarantees that essential clients
have the resources they need without any short-falls due to excess capacity for a non-
essential purpose.

An essential property of the SMS is that it be survivable itself. The SMS should continue
operation near total system failure. It cannot rely on any individual component regardless
of its level of availability. This requires that survivability emerge from every component
through the action of the SMS. The SMS augments every entity (service or physical
resource) in an Object Service Architecture (OSA) with the ability to act in its own best
interest.

This approach to survivability is to be differentiated from hardening individual resources
to the point that they could survive a broad class of predicted threats. As a chain is only
as strong as its weakest link, so a service is only as strong as its weakest dependency.
Regardless of the availability of a map server, if a weather service is not available, a
flight cannot be planned. This example points out the fact that the correct servers must
be hardened. Even if both servers are hardened, problems arise if they are not hardened
to the appropriate degree. Suppose the weather server is by its nature more vulnerable to
attack than the map server. Hardening the weather service to an equal degree as the map
server requires additional resources.

Individual resources must be hardened to the appropriate degree and in the appropriate
balance to yield a survivable system. Maintaining this balance is the purpose of the
Survivability Management Service.

4.1. Resources, Services, and Threats

The SMS allocates resources to services so as to minimize the potential loss of work from
threats to the system. At the most basic level, resources are physical assets such as CPU,
disk, memory, and bandwidth. Services built upon base resources may be used as a
higher level resource by yet another service. At the highest level are those services used
directly by an end user. A threat may compromise any service or resource.

Resources, services, and threats all change dynamically. To be managed effectively they
must be closely tracked. This is true regardless of whether they are to be managed by an
administrator or an automated service. The SMS maintains resource, service, situation,
and threat models. The models consist of both static and dynamic data. The resource
model contains all resources available to the system, the availability of those resources,
and their utilization. The service model includes the information maintained in type and
implementation repositories and adds service instantiations and dependencies between
services and their instances. The situation model defines objective functions for
survivability based on real-world operational requirements. The threat model contains the
best estimate of the threats a system faces and their probabilities of success as well as any
threats that are in the process of materializing.

The purpose of the SMS is to optimize utility and survivability given the information in
the models. This goal begs several questions: what is utility, what is survivability, and

84

Appendix A-4

what is optimal. The answer to each depends on the semantics of the applications in the
system and the goals of the system's users. Given application specific objective
functions, SMS optimizes the system toward these goals.

4.2. Design

The SMS operates directly from the models. Other agents such as administrators or
failure detectors update the models to reflect the current state of the system. This
separation creates a very strong abstraction barrier between the SMS and the rest of the
system which allows the design of the SMS to be considered in isolation.

4.3. Issues any SMS design must deal with

An SMS design must deal with issues related to security, survivability and distributed
load balancing. Issues of particular importance follow:

• Sensitivity to Inaccurate Threat Assessments - An essential input to the SMS is a
threat assessment; however, the exact probability of a successful attack is never
known a priori. The SMS must produce good allocations given only a reasonable
approximation of the failure probabilities.

• Fidelity - Fidelity determines how often the SMS runs and at what granularity it
allocates resources. Fidelity correlates with overhead. The SMS should be able to
operate with only a small increase above existing service binding protocols.

• Interaction with Security Domains and Enclaves - The SMS allocates resources
from a pool. The larger and more homogenous this pool, the more efficient the SMS
can be. The effect of security domains and enclaves is to partition resources.
Whether an SMS can operate efficiently in this environment remains to be proven.

• Local Authority of Command - The SMS cannot violate local authority of
command. It should have the potential to efficiently allocate shared resources outside
the local authority.

• Thrashing -- The SMS must exhibit stable resource allocations. Constant
reallocation for a negligible performance improvement must be avoided.

• Partitioning - The SMS cannot rely on any central authority that could be made
unavailable by a network partition.

4.4. SMS Market

There are several metaphors for the design of an SMS. It could be considered to be a
planning problem with the goals of utility and survivability: Alternatively, it could be
viewed as a constraint satisfaction problem. A third possibility is to view survivability as
a resource allocation problem to which free market principles apply. The free market
approach has the desirable property that optimality arises from the action of every
participant in the system acting in its own self interest which satisfies a high level
requirement of the SMS.

85

A(1) A(2) A(3)

B(1) B(2) B(3)

Appendix A-4

The following example illustrates emergent survivability from a simple computational
economy. Suppose there are two services A and B each with three replicas, one active
and two passive.

In a computational economy each service is assigned a value. In
this example both A and B have a value of 1000 credits. The value
of each replica is a fraction of the value of the entire service. For a
simple failure model the value can be computed as follows:

Value of Replica = (Value of Service) *P(Failure of a Host)(NumberofHos,s)(l - P(Failure of New Host))

The value of each replica is its contribution to the value of the service. That contribution
is the value of the service times the probability that the replica will complete the service.
Since the replica will only be used if all prior replicas fail, the probability that a replica
completes a service is the probability that all prior hosts fail times the probability that this
replica succeeds. The value of each replica in the example can be computed assuming
that the probability of failure for some time unit is 10%. The first replica for both A and
B is worth 1000*(1 - 0.1) or 900 credits. The second replica is worth 1000*(0.1)(1 - 0.1)
or 90 credits and the third is worth 9 credits.

The survivability of the entire system can be computed as the probability that all essential
services complete. Both A and B are essential services. The probability that either fails
is the probability that each of their replicas fail. In general we do not assume
independent failure. However, for the purpose of the example assuming independent
failure with three replicas, the probability of failure for A is 0.001. Likewise, the
probability of failure for B is 0.001. The probability that either fails is 0.00199. Thus the
survivability of the system is 0.99801.

Now suppose there is a concerted attack against B which causes two of B's replicas to
fail.

The survivability of the system drops to 0.8991 even though A is
operating at full strength. Since B is an essential service its
weakness drags the survivability of the entire system down to
below its own level. The remedy is to share the available
resources between A and B through the computational market.

B is willing to pay 90 credits for a second replica at this point while A is still only willing
to pay 9 credits for its third replica. If the host of A(3) receives a bid of 90 credits for its
services, acting in its own best interest it should accept and start running a second replica
forB.

This reorganization occurs without any global coordination.
Afterwards the survivability of the system rises up to 0.9801. Not
as high as the initial configuration, but significantly higher than
the degraded state without the computational economy.

A(1) A(2)

\
B(1) B$2)

A(3)

A(1) A(2)

\
B(1) Bfö)

B(2)'

4.5. Issues specific to a market based SMS

The use of a market in the design of the SMS introduces the following new issues:

• Non-Deterministic Behavior - Given the physical distribution of the resources
managed by the market, true non-determinism is introduced into the system. Some

86

Appendix A-4
non-determinism is not problematic. The question is whether or not the non-
determinism can be reasonably bounded.

• Market Crashes - Market volatility is not problematic if it reflects volatility in
either resources or demand. An effective market must manage excess volatility and
avoid speculative bubbles.

• Inflation - Inflation is the result of an imbalance between resources and currency. A
protocol must be developed to add new currency in proportion to new resources.

• Local Optima - A market is capable of reaching Pareto optimality, a local optima.
If this is not sufficient, the market must be augmented with randomization or linear
programming to reach a global optima.

4.6. Auction Protocol

A contract is structured as a rate of payment for a specified quality and quantity of
service Both quantity and quality are abstract with respect to the market which brokers
any commodity. The rate of payment may include a penalty for breaching the contract.
In this way the market implements soft real time constraints. A contract exists for a
specified duration. If the server cannot deliver the service as specified in the contract it
must pay the breach penalty.
Each client maintains a list of the quantity of each service it requires. Periodically the
client checks this list against the services for which it has contracts. For those services
without contracts, it requests a list of candidate servers from the EBS. The candidates
provide the required service but may do so with different QoS or at different cost. The
cost of a service is estimated to be the service's earnings from previous time periods
which are kept in a separate earnings database. The servers are further differentiated by
their failure characteristics which are kept in the threat model. All this information is
taken into consideration by the client broker.
The client broker then writes several contracts, one for each server it is interested in. The
contracts may be for different rates or durations because the servers are not homogenous
and the client my not be willing to pay each the same amount or to commit for the same
duration. These contacts are then offered to the servers.
A server broker gathers offers from clients and when it is ready to accept new work
chooses an offer to accept and acknowledges that contract. If another server has already
acknowledged the contract, the acknowledgment will fail. The server broker will then
select another contract to acknowledge and repeat the process.
The choice of which contracts to accept is complex. In a general sense it amounts to on-
line bin packing. Each server broker aims to maximize its profits over time. This
criterion does not reduce to any simple objective function like accept the highest priced
contract or maximize resource utilization. Both the pending offers and the contracts m
effect at the time determine the pool from which the server broker can choose to schedule
work The existing contracts are included because they can be postponed or if necessary
breached. Breaching a contract will usually incur a breach penalty which must be paid by
the server broker, so only if a new contract will pay enough to compensate for the lost
revenue and the breach penalty will it be considered.

87

Appendix A-4

Accepting a breach penalty is in itself an issue the server broker must consider. A client
that absolutely needs to have a service performed is likely to be willing to pay a relatively
high price for that service; however, the client will pass on a high penalty for non
performance in the form of a breach penalty.

After a server satisfies a contract, it bills the client. Each resource maintains its own
account locally. There is no central bank because this would be a centralized point of
failure. The amount is debited from the client and credited to the server. This transaction
is not validated, but all actions are recorded in a ledger so if there is any fraud it can be
detected off line.

The bidding logic for a new replica is very much as it was described above. The example
in section 4.4 assumes that each host has a fixed, independent failure probability. The
Threat Model actually used captures the correlation between hosts which the broker for a
replicated service uses. At a high level the value that each host brings to the replica
group is the same. It is the value of the service times the probability that the prior hosts
fail times the probability that the host under consideration succeeds.

5. Models

The Survivability Service maintains three models. The purpose of these are discussed in
Composition Model for Object Services Architectures. Since that was written, we have
combined the Attack and Threat Models into a single Threat Model and made the Service
Model separate.

This section discusses the models as they are currently defined.

5.1. Resource Model

The current design of this model is presented in section 7.1 of Composition Model for
Object services Architectures and is not repeated here. The model as defined is more
complex than is used in the demonstration prototype at present. It is not clear at this
point how detailed the model must be in order to allow matching of code images to
physical resources or how quality of service specifications should be supported.

5.2. Threat Model

The Threat Model models the kinds of attacks that can be launched (intentionally or
otherwise) against the resources of the system, the resources affected by such attacks, and
the likelihood of an attack occurring and if it occurs, of causing damage.

The Threat Model is used by the SMS to avoid creating brittle configurations that are
likely to be easily damaged by probable errors. While the Threat Model is currently
used by the SMS market mechanisms, a similar model would be required regardless of
the mechanism used by the SMS to determine desirable, non-brittle configurations.

The model was designed to use a single, simple formulation for attacks that affected
single resources and attacks that affect multiple resources. The need to treat attacks that
might cause multiple failures is important. Because our concern is with configurations
rather than single resources, we care far more about whether a configuration composed of
several resources survives than that any individual resource survives. This is the basis for

88

Appendix A-4
survivability; that it is possible to create and evolve survivable configurations from non-
survivable components using redundancy, migration, and clever rebinding. Thus we need
to be able to estimate the probability that the configuration will fail.

The following example motivate the need for considering correlated failures. Often,
redundant (not necessarily identical) instances of some resource are used. In this case,
only some quorum of these resources must survive in order for the resource group to
survive Consider an attack such as a power failure that could cause a host to fail with
probability p. The expected number of replicas to fail is np. However, we don't care
about how many replicas fail, only whether at least one remains running. For this
correlation matters. If all n replicas are allocated on hosts on different power supplies,
the failures are uncorrelated and the probability that all replicas are lost is p . If for some
reason all replicas are allocated on hosts on the same power supply, the failures are
correlated and the probability that all will fail is simply/?.

The model identifies each kind of threat to system resources. Each threat can affect one
or more collections of resources called resource groups. The realization of a threat
against a given resource group is called an attack (whether intentional or not). A given
resource may be in more than one resource group (i.e., subject to more than one kind of
threat). The probability a particular attack will occur is designated p(group), the
probability that given group will be attacked in the given way.

So far this says nothing about whether the attack actually damages any of the resources
in the resource group, only that the attack is made. While some attacks against a resource
group will definitely affect all members of the group (e.g., the power failure example),
other kinds of attacks may or may not affect any given member. However, the failures of
such resources because of such attacks are correlated more than if the attacks were
independent. As an example of this situation, consider a viral attack against all machines
running a particular operating system. Assume there are two such attacks, one targeted
at Win NT machines and another at Solaris machines and that both are considered equally
likely to occur. Even though the probability of any given machine crashing is the same, it
is more likely that two WinNT machines or two Solaris machines will crash than that one
of each will crash. To model this situation, for each attack we designate the probability
that any given resource in the attacked resource group fails as p(i\group).

The above is illustrated by the following ER diagram. Its implementation in a relational
DBMS is straightforward.

89

Appendix A-4

Resource

T
members

Figure: Threat Model ER Diagram

From this, it is possible to compute the probability that any given combination of
resources will fail to retain a quorum in the face of all threats to the system. At present,
we use an iterative algorithm to perform this computation; a closed form may be possible.

Two obvious concerns with the above described model are the accuracy with which
probabilities can be assigned to intrinsically unknowable events, and the time scale over
which probabilities should be measured. The latter is considerably less critical than the
former, but it is important to choose a time interval in which single attacks of a given
type against a particular resource group can be assumed; in other words, we need to
model this as a Poisson process. Sensitivity to modeling error is in itself a research topic;
we are seeking funding to separately address this issue. It is our hope that being close is
good enough to cause reasonable allocation decisions to be made; remember that the
Threat Model is used only to rank the desirability of configurations already determined to
be legitimate.

5.3. Service Model

This model will include details about the semantic and performance capabilities provided
by individual service instances under different resource assumptions. It should be made
compatible with whatever the OMG Trader Service does. This is not an issue until
service renegotiation is addressed in the next year. Details TBD.

5.4. Situation Model

This model assigns valuations to the various services based on real-world operational
objectives. It may also be used to switch between different Threat Models that reflect
differing threat environments based on the real-world situation. Details are TBD.

90

Appendix A-4

5.5. Using the Models
Once a categorization has been made by the detector, there are some additional decisions
about the source and nature of the attack that need to be made. These are outside the
bounds of both the detector and the evolution system, but are key to choosing a good
evolution plan to allow the system to survive. Among the determinations that must be

made are:

• is the problem likely to be temporary or permanent? In this context, permanent also
means that it will exist for an unacceptable duration given the needs of the
application.

• is the problem an instance, implementation, or protocol failure?

• did the attack originate local or remote to the damaged site? The response may be
different depending on status of the site.

5.6. Model Refinement

The models will be changed for a variety of reasons by several different agents. This
discussion centers on changes to model content, not schema.

The Resource Model is modified when resources are added or removed, when the failure
detectors determine that some resource has become unavailable or degraded, when a
resource is assigned (successfully) to some task, and when the implementation ORB
reports on status. All are modified directly by the component noticing the change.

The Threat Model is refined when new threats are determined to exist, when a resource
becomes part of a different "threatened group" and is exposed to different threats, when
threat intensity changes, or when evidence indicates that a previous threat assessment was
inaccurate. Changes to this model are likely to be by a human "survivabihty operator
rather than automatic. We envision this kind of modification taking place from a
"security anchor desk".
The Service Model is modified when new services are defined (as part of the interface
specification in the survivable OSA abstraction) or when new implementations classes
for the services are defined (as part of the interface specification in the ORB-level object
abstraction). Either level specification may be modified. A service instance may acquire
new capabilities if it learns some new information ("I now have maps of Albania"). An
implementation may be provided with new QoS specifications for different
configurations (e.g., the performance numbers on a 800MHz Pentium with 1GB of
lOnsec RAM would probably not be part of today's specification).

The Situation Model is expected to be quite static. Existing situations are unlikely to be
changed. Additional situations are likely to be added infrequently. This is because the
definition of an operational situation is a policy decision typically made by humans after
careful consideration of operational objectives and will interact with other military

doctrine.

91

Appendix A-4

6. External Components
The Survivability Service interacts with two external components: one or more
Implementation ORBs and the Failure Detectors and Performance Monitors. The
capabilities of these are beyond our control. Further, since we want to use a variety of
such mechanisms, we cannot even fix the capabilities exactly. For example, while the
CORBA standard specifies the form of a binding statement (to connect a client to a
service), the interpretation of the argument specifying the service to be bound is left as an
implementation decision to the ORB vendors. This argument typically can be an
incomplete specification of a service instance's OID, which allows the ORB to choose a
convenient (e.g., nearby, already loaded, idle) instance to bind, and provides a degree of
portability. Needless to say, not all ORB vendors perform this selection in the same way.
Since placement is very important to survivability, this under-specification matters.

This section sketches the capabilities we expect to be provided by any reasonable choice
for these two systems. The capabilities listed effectively represent the centroid of the
capabilities of a number of similar systems, not the capabilities of any one system.

6.1. The Implementation ORB

TBD. All relevant ORB hooks appear to be provided by CORB A Naming Service,
Implementation Repository, Loaders, and the open() binding call. .

6.2. Failure Detectors & Performance Monitors

All detectors maintain a model of what constitutes normal behavior and look for
deviations from that behavior. Some failure types are generic and can be built into the
detectors directly (e.g., failed processes). Other failure types are service-specific and
rely on specification of the likely failure modes of the service (from extended interface
definitions for fault tolerance).

Detectors can be categorized:

• Passive detectors look at patterns of behavior in the system they are monitoring. For
example, they may look for unusual communications patterns or file openings.
Deviation from that pattern may indicate that a compromise has occurred and that an
attacker is attempting to find out what can be accessed.

• Active detectors probe the system, sending out messages to see what response will be
obtained; they are better able to detect failure (as opposed to compromise) than
passive detectors. Wrappers that send out "heartbeats" are examples of such
detectors, as are probes like "ping".

• Reactive detectors are invoked directly by applications when specified application
events occur. The Orange Book requires "certified" applications be able to log such
events, which could also be provided to the reactive detector. Often, "failed" events
are more interesting than "successful" events, since they have a higher probability of
reflecting compromised or degraded behavior. Which events are actually logged is
determined in an "accreditation process" that takes into account the risk/benefit of
logging or not logging particular events in a given application context.

92

Appendix A-4

• Self detectors are services that signal exceptions up the calling chain. Such
exceptions are often very accurate, but of course only work when the service is still
active and connected. The exceptions that can be signaled in this way are part of
conventional IDL interface specifications.

• Manual detectors are human entered observations and conclusions. They often relate
to gross failures (e.g., physical losses) or are the results of analysis of detected events
to determine a root cause (e.g., by a CERT-like organization).

Regardless of which type of detector is present, the detector is unlikely to provide a lot of
information about why the failure occurred. This is because all detectors essentially look
at symptoms of attacks rather than the attacks themselves (since this is all they can really
see). This has advantages and disadvantages. The obvious disadvantage is that because
the detector cannot provide details about the attack that caused the failure, the choice of
remedy is less accurate than would be the case if it were known how the system was
compromised. For example, without knowledge of the attack, the system might be
reconfigured in such a way that it is still vulnerable to the same attack. On the other hand,
by looking only at symptoms, the detector can detect the results of attacks that have never
been seen before as long as they produce symptoms that fall outside the normal range of
behavior.

Detectors are likely to categorize the kinds of detectable events that we wish to respond

to as:

• loss of site

• loss of service (other services at site running)

• loss of access to site

• loss of access to service (can get to other services at site)

• degraded performance of site, service, or network (may not be able to differentiate)

• possible corruption of site or service (still providing some useable, but perhaps
tainted, service)

These events seem to all be distinguishable using a combination of active, passive, and
reactive detectors, and the responses to them are potentially very different. Li particular, a
major difference between loss of access and loss of site or service is that with loss of
access, if access can be re-established, the service still retains its state, whereas if the
service or site has been lost, the service and its clients must be re-synchronized, which is
not always possible.

Note that in an environment where increasingly a site (processor) is dedicated to a single
service, the distinction between loss of site and loss of service blurs, but that even in this
situation there is a useful distinction to be made because a daemon running alongside a
service can be used to differentiate between loss of the service and loss of access (though
not between loss of access and loss of site). Since loss of access and loss of service can
have different recovery techniques, the distinction is significant.

93

Appendix A-4

Mis-categorization by the detector is certainly possible. Since this is the case, the
detector should be biased to place the error into a more severe category (rather than an
incorrect category), with the result that either no recovery is possible or a less desirable
survival strategy is pursued. Detection and categorization can also be delayed. Thus it is
important that synchronicity or failure and detection not be assumed by the SMS.

For the immediate future, we are assuming a timely and accurate failure detector. An
important future issue for the SMS is its sensitivity to mis-categorization of failures and
strategies for compensating.

7. Related Work

SS focuses on delivering high quality at the service level. This requires utilizing recent
accomplishments in the areas of Network QoS, High Availability, Failure detection and
market based resource allocation.

7.1 MARX

The Michigan Internet AuctionBot generates an efficient price for any commodity. Its
goal is to find a price that is fair to both the buyer and the seller that clears the market.
Research into applying the AuctionBot to network bandwidth allocation is being
conducted. This work is relevant to the survivability service, but it is not clear whether
the AuctonBot can be used directly. The goal of the AuctionBot project is an open,
agoric system. We believe that similar functionality can be achieved with lower
overhead than is required in an agoric system.

Michael P. Wellman, Jeffrey K MacKie-Mason, Sugih Jamin, "Market Based Adaptive
Architectures for Information Survivability,".

7.2 AQuA

In the areas of High Availability and Network QoS, QuO from the AQuA project
includes the state of the art. At its lowest levels it is built upon the reliable multicast of
the third generation of the Isis project, Electra. AQuA builds reliable, predictable
message delivery into a CORBA Object Request Broker. Quality of Service is specified
by a high level analogue to IDL called QDL. This distinction separates the semantics of
the service and its interface from its bandwidth and timing constraints.

The AQuA system adds network QoS to CORBA so that an application written on a LAN
can be used in the less hospitable environment of a WAN. AQuA is a viable component
of the Survivability Architecture but it does not manage resources on hosts or high level
resources synthesized by services. AQuA passes network QoS capabilities up to CORBA
in a transparent manner. Other QoS issues and the resource balancing required for
emergent survivability would have to be managed by other components.

John A. Zinky, David E. Bracken, and Richard D. Schantz, "Architectural Support for
Quality of Service for CORBA Objects," Theory and Practice of Object Systems, Vol
3(1) 1997.

94

Appendix A-4

7.3 SMARTS InCharge

This is a system for network failure detection based on resource and failure models.
Network components are modeled in an extended IDL which supports the definition of
failure modes and visible symptoms of those failures. The system is CORBA-based and
models networks at various levels of abstraction in a modeling language called NetMate.
There is a great potential for using at least some of the same model and the modeling
language should be considered for compatibility. It is possible that their approach to
failure classification based on creating code books mapping symptoms to errors would be
appropriate for the external failure detectors, but this is outside of our concern.

S Yemini S. Kliger, E. Mozes, "High Speed & Robust Event Correlation", System
Management ARTS (SMARTS) 14 Mamaroneck Avenue, White Plains NY 10601 kliger,
eyal, yemini@smarts.com

95

Appendix A-5

QoS & Survivability
David Wells

Object Services and Consulting, Inc.

March 1998
 Revised August 1998

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome Laboratory under
contract F30602-96-C-0330. The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied of the Defense Advanced
Research Projects Agency, Rome Laboratory, or the United States Government.
© Copyright 1997,1998 Object Services and Consulting, Inc. Permission is granted to copy this document provided this
copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy or completeness of the
information in this document.

1 - Introduction

In the past several years, there has been considerable research in the areas ofquality of service (QoS)
and survivability in an attempt to facilitate the construction of large software systems that behave
properly under a wide range of operating conditions and degrade gracefully when outside this range.
From the 10,000 foot level, quality of service addresses the goodness and timeliness of results
delivered to a client, while survivability addresses how to repair or gracefully degrade when things go
awry and the desired behavior is not able to be maintained. These two areas are obviously related,
because QoS forms at least a part of the definition of the "desired" behavior of a system that
survivability techniques are attempting to preserve or gracefully degrade.

This paper explores the relationship between quality of service and survivability. Section 2 discusses
the concepts of quality of service and survivability. Section 3 identifies and presents highlights of
important QoS research efforts. Section 4 discusses these projects in more detail, particularly efforts
whose approach to QoS is compatible to our approach to survivability. Section 5 identifies technical
"points of intersection" between the QoS and survivability work that could eventually lead to a
confluence. Section 6 identifies some issues that arise when QoS and survivability are combined and
points out some weaknesses in the way the existing projects add and measure survivability.

2 - Quality of Service & Survivability

The concept of quality of service has traditionally been applied only at the network (and sometimes
operating system) level. At that level, QoS deals with issues such as time to delivery, bandwidth,
jitter, and error rates. Network-level QoS is important because many applications will not function in
an acceptable or useful manner unless the network they use can guarantee some minimal service
guarantees. It has been observed that just as all services and applications rely on networks, they also
rely on other applications and services and these must also make some QoS guarantees to allow the
application to perform correctly.

96

A pair of short ropers from Rome Laboratory describe service-level QoS as a function of precision
(how much), accuracy (how correct), and timeliness (does it come when needed). For example, a map
may be insufficiently precise (100m instead of 10m resolution), inaccurate (things in the wrong
places), or untimely (delivered too late to be useful). Unless all three requirements are met a client is
not getting what it needs and therefore the result is lacking in QoS. A benefit functioni is defined for
each point in this 3-D space stating the value to the client of receiving that particular QoS. Distance
metrics for the argument spaces are application dependent. For example, the distance between red
and "orange" will be less than the distance between "red" and "blue" in a spectral dimension, but not
in a textual dimension. The benefit function is similarly application-specific and may be situation
dependent as well.

OoS at any given level of abstraction places QoS requirements on the components providing the QoS.
In the example, delivering a 10m map requires the retrieval of a certain number of bits of map data.

A survivable system is one that can repair itself or degrade gracefully to preserve as much^critical
functionality as possible in the face of attacks and failures. A survivable system needs to be able to
switch compatible services in an established connection and substitute acceptable alternatives. It must
also be able to dynamically adapt to the threats in its environment to reallocate essential processing to
the most robust resources.

QoS and survivability are intricately linked; they are not the same, but neither makes sense without the

other.

• Survivability without some notion of what is supposed to be surviving is pointless; the what is
provided by QoS metrics.

. QoS "guarantees" that can't be made to survive or adapt under changing conditions are not very
useful as guarantees, and could in fact lead to denial of service attacks as opponents bring a
system to its knees by degrading QoS and causing the QoS management system to continually
add superfluous resources.

3 ■ Overview of QoS Projects
Recent work, much of it funded by DARPA-ITO and administered by Rome Laboratory through the
Quorum program, is extending QoS concepts and mechanisms to higher semantic levels to allow the
dtfhütion, measurement, and control of the quality of service delivered by services and complete
applications. There are three major grouping of projects. SRI and BBN each have architectural
frameworks and are developing or adapting multiple pieces of technology to fit their frameworks. The
BBN and SRI frameworks address different types of QoS needs and do not appear compatible. Several
independent projects are developing individual pieces of technology. All projects are administered by
Rome Laboratory, which also does some technology development. The groupings and relationships of
projects (shown in OoS Projects Map) are given below. The individual projects are described in more
detail in Section 4.

BBN Cluster: The BBN cluster consists of three architecture/infrastructure efforts based on a
CORB A client server model:

• QuO - Quality Objects

97

team: BBN - see: papers
• AQuA - Adaptive Quality of Service Availability

team: BBN, Illinois, Cornell - see: papers
• PIT - Open Implementation Toolkit for Creating Adaptable Distributed Applications

team: BBN, Illinois - see: papers,

and one application demonstration project:

• DIRM - Dynamic Integrated Resource Management
team: BBN, Columbia, SMARTS - see: papers

These projects are closely related, and in many ways it is useful to think of them as one large project.
QuO developed a general framework for QoS in CORB A that is being refined by AQuA and extended
by OFT to address service availability management. There is to be a "production QuO" done under the
DERM project.

SRI: SRI is developing an architecture and scheduling algorithms for the delivery of end-to-end QoS
for a data streaming model:

• Adaptive OoS-driven Resource Management for Distributed Real Time Systems
team: SRI - see: papers.

Independent Projects: These projects are developing modeling and analysis/simulation tools that
could be used by a QoS management system to model resources and QoS requirements and to
schedule resources. Several of the tools were developed for another purpose and are being adapted to
the QoS domain. All have had some relationship with the BBN cluster of projects. Projects are:

• UltraS AN
team: Illinois - see papers

• QoSME
team: Columbia

• InCharge/MODEL
team: SMARTS, Inc. - see papers,

• Horus
team: Cornell

4 - QoS Project Details

BBN Related Projects -QuO, AQuA, OIT, DIRM

The QuO project is developing Quality Objects that can manage their own QoS. QuO is integrated
with the CORB A architecture, in that most of the work is done by extending client-side and server-
side ORB stubs. These "smarter" stubs are generated from an extension to IDL called QDL that allows
specifying things about service and connection quality. QuO assumes a CORBA-like processing
model in which there are client-server and peer-peer relationships and in which the exact processing
loads are unknown and can be quite variable. This distinguishes QuO from the SRI work, where the
information flow of the applications takes the shape of a DAG and where processing and QoS
requirements are assumed to be well understood a priori as is the case in multi-media delivery.

98

Using QDL, an object can specify the QoS it expects from each service that it uses and can specify
what its usage patterns will be (e.g., invocations/sec). An object will similarly use QDL to specify the
QoS it knows how to provide (which can be different for different implementations or resource
levels) These specifications are used to create client-server bindings called connections. Conations
are first-class objects as they are in our survivability model defined in Composition Model for OS As.

To make the writing of QoS specifications and the creation and maintenance of connections tractable,
QoS is partitioned into regions of normative behavior. Within each region it is assumed that every
QoS is equally useable. Region definitions look like predicates in a language like C. Some of these
regions (e g , Normal, Overload, InsufficientResources, Idle) are predefined, but others can be defined
using QDL Clients and services parameterize these regions to define when they are in a particular
one For example, a client may say that when in Normal mode, it will make between 2 and 10
calls/sec to a particular service; anything over 10 calls/sec puts the client into Overload mode.

The use of regions means that minor (insignificant) deviations in the QoS delivered do not require
changes to the service or connection, which substantially simplifies runtime processing. Similarly, it
clients and servers agree on common meanings for named regions, matching client and server
specifications is simplified which is important since this activity must often be done on the fly. 1 he
use of QoS regions is a significant difference between the BBN and SRI approaches; in the SRI
approach, the benefit function is allowed to be continuous.

The regions discussed so far are called negotiated regions since they represent where the client and
server try to operate and form the basis for the connection contract. As long as both the client and
server operate in their negotiated regions, all is well. However, it is possible for either the client or the
server (which for these purposes also includes the connection between the proxy and the remote server
implementation) to deviate from the negotiated region, either by overloading the server or failing to
deliver results as required. Because of the potential for operating outside the negotiated regions QuO
defines reality regions to represent the actual QoS-relevant behaviors of client and servers. Reality
regions are defined in the same way as negotiated regions; it appears that for any given connection, the
same set of specifications will be used for both kinds of regions. If the observed reality region differs
from the negotiated region, the connection is no longer valid and remedial action must be taken.

Various monitors determine the reality region a connection is actually in. Monitors are presumably
predefined to monitor the kinds of things that QuO cares about; others can presumably be defined, and
there is a claim that they can be deployed selectively to only monitor those QoS items of interest.
Types of monitors include counting invocations, timers, and heartbeats. It seems that there could be a
whole subsystem for inserting probes in useful places.

Operationally, a QuO object is a distributed object where part of it lies on the server side and part(s)
he with its various clients. It is appropriate to think of the client side as being a very smart proxy
object that knows how to do QoS related actions. (It appears that this stub can be further tailored to
do iust about anything, but that doesn't look like a good idea unless the architecture tells what kinds of
things should be done in the proxy.) A QuO proxy keeps track of the negotiated QoS mode of the
connection; interacts with monitors; provides feedback to the client through interfaces generated from
the QDL; and takes certain actions to maintain the negotiated QoS.

Client-side proxies can take actions to maintain a QoS mode or change the negotiated QoS region. A
client makes a service request through a client-side proxy which decides what to do with method

99

invocations. This could include sending the requests to a server, servicing them from a cache, routing
to replicas, routing to a varying set of implementation objects, or ignoring them and signaling an
exception. How many of these they actually plan to provide is unknown, but this is definitely where
they fit. It fits very well with our survivability model, except that we would extract this from the
purview of the client and move it to a Surivability Service to handle competing service demands. In
an ideal world, there would be a large number of generic actions that could be taken by any proxy to
maintain QoS or shift regions gracefully when it detects a change in client behavior. Our Evolution
Model for OS As defines many ways to evolve configurations. Some of the actions a client-side proxy
can take to maintain a region or change regions are:

• A server may be able to shift its implementation in order to stay in the same region without
disturbing the client. An example given is to change implementations to trade bandwidth for
processing power as resource availability changes. Since the server stays in the same negotiated
region, the client doesn't need to see any change.

• The client may request a different negotiated region. For example, it may go idle and negotiate
a lower QoS region. It is also possible that a client is detected to have entered a different
region. For example, the regions may define Idle as no messages of any kind for 5 minutes. If
the reality region enters Idle, it can be treated as if the client signaled that it was going Idle.
Thus a client can change modes without having to be implemented for QoS.

• A server may have multiple implementation strategies that will allow it to enter different
regions. For example, if the client goes Idle, the server may scale back its own resources, while
if a Client enters an Overload mode, the server may add resources or shift to a different
implementation.

• The proxy may make an up-call to the client to find out what to do.

Feedback to the client is done by callbacks generated from the QDL. These form an additional
interface to the client that is used only for QoS purposes. The proxy can notify the client that the
reality region has deviated from the negotiated region. The client must provide handlers for these
callbacks to either begin a negotiation process with the proxy or to change its own behavior in some
way (e.g., slow down, accept lower precision, etc.). Again, it appears that there is a wealth of
opportunity to do good things here, but it is not clear how many of them are actually defined.

The QuO papers give a fairly detailed figure of the form of the proxy objects. The partitioning of
function seems good and would allow us to extend if we needed to. This looks like where a lot of
their work went.

A weakness of the QuO project seems to be that they appear to have a sort of "one-level" service
model, in which clients call services which are leaves. Also, the allocation of resources appears to be
under the control of the proxies, without much regard for other demands. They briefly mention a
language, Resource Definition Language (RDL) for specifying resources and it would be reasonable
that there be some sort of auction or scheduler that gave resources out in a non-object centric way, but
this gets little attention. It may be possible to handle both multiple levels of objects and sensible
allocation for competing resources, but they don't seem to do it. It appears that the architecture and
models do make this possible.

AQuA is improving the QuO proxy architecture, attaching RSVP to allow QuO proxies to control
QOS over CORBA, and adding regions to deal with availability as well as QoS. Not much published,
so what follows is my supposition as to how this will work. It appears that they plan to predefine a
number of negotiated regions for availability, where the region predicate has to do with things like

100

how many replicas will be required in order to stay in that region. Hooks down to a replication
manager (probably via Horus or using Electra/Ensemble) are used as the monitors to detect whether
the reality region for availability has changed (e.g., a replica died). Actions in response to an
availability change would be to start another replica or inform the client of the change and et the
client decide what to do in the same way it decides what to do about QoS region changes. UltraSAN
is being used (or at least considered) as a way to determine the availability region predicates^ Using
UltraSAN (and possibly SMARTS/Model), they will model various configurations and use the
UltraSAN simulation and analysis tools to determine how long a configuration is likely to stay alive or
how long it will take to reconfigure (I haven't actually seen the latter discussed at all, so maybe ttiey
do not plan to do this). They will define and analyze configurations until they find one that has the
right predicted availability for a particular client need. That will then form a contract for a specific
availability region.

It is not clear that they maintain a connection between QoS and availability. It looks like region
predicates express both QoS and availability concerns in the same predicate. Since increased
availability can degrade QoS (slower with more replicas depending on the operation), this needs to be
addressed It does look like they will be able to determine that the combined reality region does not
match the combined negotiated region, but that will not help with the act of finding a good combined
region definition that can actually be instantiated.

OIT is just getting started and not much has been written about it. It looks like they will be cleaning
u^some QuO internal architecture and perhaps developing a toolkit to help write and manage
contracts This may integrate with the use of UltraSAN; it does not say so but that would not be an
unreasonable part of such a toolkit. It also appears that OIT will be using these extensions to provide
so^ne support for survivability along the lines of AQuA; it is not clear what the relationship is between

them.

DIRM has much more the feel of a technology demonstration than the other projects. Little is written
atoulit, but it appears that the idea is to show off some QoS concepts in a collaborative decision
process in some sort of military command post setting.

SRI

SRI is working on end-to-end QoS, with particular emphasis on managing data streaming within a
DAG of processes. The strengths of the work is that it has a very clear modeling methodology and
language (including pictorial) for specifying alternative implementations, natural handling or
information and processing flows that encompass arbitrary numbers of steps, and a scheduling
algorithm for allocating processes and communication to available resources as described in a system

model.

Resources are allocated by a scheduler based on a modified Dykstra shortest path algorithm for
finding least cost (w.r.t. a definable cost function such as least time, cheapest, or throughput) patii
through a graph representing the required processing steps and communication There is a delta form
oTm?algörithm that gives delta-suboptimal decisions much faster. A concern is algorithm speed and
the fact that it appears to require a centralized scheduler.

It aDnears that the scheduling algorithm precludes the use of this work in a peer-peer or client-server
lettS so this is a major differentiator between the SRI and BBN work. There are several reasons
Ätad to see how a shortest path algorithm can be adapted to handle arbitrary numbers of

101

loop iterations as can be found in general client-server or peer-peer systems. A feature of the
algorithms is that processing steps and flow be able to be identified on a time step basis; this doesn't
seem to match an environment in which service requests are either random or have high variance. All
their examples deal with media delivery. The papers mention the ability to separate feedback paths
from feed forward paths, but this is not explained.

They define more completely than anyone else surveyed the meaning of precision, accuracy, and
timeliness, specifying explicit parameters for these concepts. Each parameter has several components,
including absolute values, relationships between values, expected values, bounds, and variance. It
looks like a QoS specification could become quite complex. They also define a benefit function in the
obvious way. It is not clear how their scheduling algorithm deals with relative values or variance that
their QoS specifications allow.

This work appears most suitable for rather tightly controlled situations where a high level of QoS is
required. Unlike the BBN work, their solution appears to not be open.

UltraSAN

UltraS AN is a system for modeling and analyzing networks in which events such as workload and
failures are probabilistic. A system is modeled as a stochastic activity network (SAN), which is an
extension of a Petri net. A SAN extends Petri nets by allowing transitions to be probabilistic, for
multiple tokens to be at any given place, and "gates" to act as predicates to define which transitions
are allowed at any given time. The result looks like a stylized dataflow graph of the activity under
analysis. Reward functions are given for transitions to designated states and for remaining in a state
for a duration. The point of framing the system as a SAN is that a SAN can be converted to a Markov
model, to which they know how to apply analytical and simulation techniques. They have tools to
define the SAN and to convert it to a Markov model and analyze & simulate (by means of fault
injection) the resultant Markov model. They also have some partitioning and replication constructs to
aid in the construction of SANs. Basically, you can "join" SANs together so that they share "places".
This allows replicas to be composed and for large SANs to be created from small SANs. They also
have a technique based on these replication tricks to reduce the state space of the Markov model,
which otherwise would quickly become unmanageable for reasonable sized SANs. The software is
currently distributed to 129 universities & several businesses

AQuA is attempting to apply UltraSAN to availability management by building a SAN for a projected
configuration (along with the reward functions), converting it to a Markov model, and solving to
determine what level of availability it can provide. I don't see how this could be done on the fly, so I
presume they intend to do off-line evaluations of various configurations they think they can construct,
rate each as being survivable or available to some degree, and men define "regions" around these
precomputed configurations, e.g., UltraSAN predicts that under a given set of transition assumptions,
3 replicas gives availability of 0.9999 for T seconds, so a region of high availability would be that 3
replicas are maintained. Failure to do so constitutes a "reality" region change, which requires
reconfiguration or change to a different "negotiated" region. I don't think this can deal well with
configurations not previously planned as desirable and not with changes to the transition parameters as
would happen if the system came under attack. This might allow a degree of "preplanned"
survivability, but does not appear highly adaptive.

None of the papers directly talk about evaluating configurations for survivability under exceptional
conditions. All deal with expected behavior of a configuration to determine the "reward" from a

102

particular configuration.

Limitations on the use of UltraSAN in AQuA or OIT appear to be:

. Modeling in UltraSAN looks quite complex, so not a lot of alternative configurations will be
able to be tried. Hence, they will not be able to employ as many survivabihty techmques as they
might actually have available. .

. UltraSAN analysis techniques are heavy weight, since they require repeated simulation or
solution of huge Markov models. This means that all analysis will have to be done in advance;
i.e., when contract regions are established, not when something breaks. This has the same
disadvantage as above.

. UltraSAN models do not appear to be easily modified if the interconnect topology changes.
This is not a big problem in the original target environment of UltraSAN, where topology was
based on physical interconnects, but is more of an issue in a service model, where the topology
changes as easily as starting a new process.

• It is not clear how UltraSAN deals with a time-varying mix of tasks and loads.

Columbia - QoSME

Columbia University has done work on QoS for stream data. It is not clear how this work differs from
RSVP which is more mainstream (I haven't investigated enough to judge at any deep level). Possibly
the emphasis in this project is on scheduling and resource allocation rather than mechanisms.

SMARTS - MODEL & inCharge

MODEL uses the NetMate resource model to describe systems. MODEL does fault isolation by
treating symptoms of faults as bit errors in a code and then using error correcting techniques to isolate
S?Xk? (me original fault) that caused the "received» symptom code. It is an eleganapproach and
"claimed to be fast. A problem is that the connection topology is ngid, and since this determines the
code book, component reconfiguration (sw or hw) will force reconstruction o *e ^de took. Also,
since symptoms appear over time, it is not clear how to assemble them into a code that can^be
decoded. The difficulty is figuring out an appropriate time window particularly when »3^?
reports may be delayed or lost. The NetMate model could be a basis for our resource and application

models.

Cornell - Horus

Horus is a group message delivery and synchronization system for networking. It is a direct
descendant of the ISIS system. Horus has been used to manage replica groups as part ****&
individual services highly available through controlled redundancy. Horus is not currently hcensable,

5 - Commonalities Between QoS and Survivability Techniques

As should be obvious from the previous sections, there are a number of similarities in architecture,
mechanisms, and metrics between service-level QoS efforts and our survivabihty work. ^
section, we examine these commonalities. The next section discusses differences. The terminology
we use comes from CORBA, although the observations are also applicable m other object-based

frameworks.

103

QoS and Survivability Specified by Client; Managed by System

All work in QoS and survivability assumes that while clients are able to specify the value they place
on receiving a given QoS or having a service remain available, they should not manage it themselves.
There are four reasons for this:

• While managing either of these is hard for a service developer to implement on a per service
basis, the techniques used are generic enough that they can be developed well by QoS and
survivability experts and applied to a wide variety of services and situations.

• QoS and survivability both require resource reservation, which in turn requires substantial
knowledge about the resource environment. The environment is the same for all services in it,
so it makes more sense to model it outside of any of the individual services. This especially true
since the environment will be expected to evolve (for good or ill) over the lifetime of the
services.

• Services cannot make unilateral decisions on resource reservation because they have to compete
against other services, whose existence may be unknown to them. Every service will naturally
attempt to maximize its own behavior, but in resource constrained conditions, this will be
impossible. This will require at minimum a non service centric allocation mechanism.

• The relative values of the services themselves will change depending on the situation. Services
that are valuable in peacetime may become considerably less valuable during combat. Unless a
service is programmed to understand all the operational contexts in which it may find itself and
adjust its demands accordingly, this is impossible to achieve. This is unreasonable to expect,
especially for services that may be used for many years and be adapted to new contexts. It also
does not handle greedy services that chose not to play by the rules, perhaps from malevolent
intent.

Moving the locus of QoS and survivability management out of the client requires significant
extensions to both binding specifications and the CORBA proxy architecture.

Binding Specifications

A binding specification used in a system managing QoS or survivability has to specify both more and
less than current, OID-based bindings do: more because things such as performance, abstract state,
trust, availability, and cost of use must be specified in addition to type; and less because if the
specification is too specific (e.g., identifies a single object or server) QoS and survivability
management will not have enough choices available to do a good job. Once the binding specification
becomes more sophisticated, services will be required to advertise their capabilities to a far greater
extent than they do now. Binding specifications and advertisements will need to be matched to
determine a (possibly ranked) set of (complete or partial) matches. In an OMG context, this would be
the job of a Trader Service, although far more sophisticated than any yet existent, even in prototype
form. Because trading probably requires domain knowledge to achieve good matches, we will
probably see a family of domain-specific Traders. If this is true, then matching a complete binding
specification will require consulting several Traders and composing their responses. If this approach is
taken, it will be possible for the composition function to weight the various responses (e.g., to care
more about the speed of response than the security of the service under some circumstances).

Proxy Architecture Extensions

104

Since a client should be unconcerned with how QoS or survivability is provided these must be
provided by some other part of the system. Both BBN and OBJS have chosen independently to make
the control locus of this the server client-side proxy (the local stand-in for a remote server object) and
the server-side stub (which handles communication on the server end of the connection). CORBA
proxies and server stubs are generated from DDL specifications and are responsible for message
passing between clients and remote server objects via the ORB. This requires argument marshahng
Ld inferaction with the underlying communication layer. Standard CORBA proxies hide the location
and implementation of services from the client, but do little else.

There are several advantages to extending CORBA proxies and server stubs:

. All communications between clients and servers must, by definition, pass through theproxies
and server stubs. Arguments and return results are exposed and packaged for movement at this
print as part of the normal argument marshaling. Together, this means that all communications
can be mediated and that what is passing through the connection is easily ac«MW*

. A proxy and the server-side stub reside in different address spaces (and often on ^rent
machines). This gives some flexibility as to where a given extension should be placed. This can
ta^advantage for performance reasons. In addition, since functionality can onl>£ providd
reliably if the monitor is incorruptible, having the ability to place monitors and mediator out of
harm's way is advantageous. This is especially true for things like security monitoring, where a
client or service may wish to avoid the mediation and could attempt to corrup local monitors,
me OMG security Service does this. Finally, because proxies and stubs can fail independently, it
is possible to place monitors in each to monitor the health of the other.

. TTCORBA specification allows proxies and stubs to be extended to do oth ^ tasksbes^es
message passing. Alternative proxies have been used to manage,£* °^Dd*nM»
orocessing load among replicas, and to manage security (in the OMG Security Service)
Co^nerdalORBs offen provide server stub alternatives that wrap the server implementation

or eS the DDL compiler that is provided with every ORB to generate proxies «d «™
sLoT[Note: replacement is more likely than extension because, although^they couldlb* fcese
compilers are in general not open to extension.] IDL can be extended to allow definition of
additional properties as in the case of BBN's QDL for defining QoS attributes.

There is considerable latitude for the internal architecture of extended proxies and server stubs. The
S qu'tion* are: what belongs on the client side and what belongs on the server side whether
existing proxies should be extended or used as-is by a more abstract connection object, and the
dSnMon of interfaces to monitors, up-calls to clients, and external services such as the Survivability

Service.

Adopting BBN terminology, we call the entire collection of mechanisms between a client and a
service a connection.

Connections

For both QoS and survivability, a connection between a client and a service is far more abstract and
far more active than in CORBA.

105

The need for increased abstraction is because the enhanced binding specifications allow considerably
more binding alternatives and consequently more flexibility in the way the connections are established
and managed. This additional flexibility makes it important to make not only the location and
implementation of the object providing the service hidden from the client, but also which object is
providing the service. Because of this, the client must not be allowed to act as it is connected to a
specific object providing the service or to expect anything about the service other than what it requests
in the binding specification it provides.

The increased activity is because the connection is attempting to guarantee far more things about the
interaction than simply "best effort" to deliver requests and return results. It does this by maintaining
information about the desired behavior of the connection in the form of a connection contract,
measuring the actual behavior through a collection of monitors attached to the proxy and server stubs,
and taking remedial action if the two do not match. Remedial actions include changing the
implementation of the object providing service, changing which object provides the service,
renegotiating the connection contract, or terminating the connection gracefully.

Because of the above, the connection itself becomes a first-class object and should have interfaces
through which its activity can be monitored as well as the interfaces used by the client and server.

Monitors

It is important that monitoring be defined and performed by the QoS or Survivability Service rather
than either the client or the server. Part of this is a trust issue; both clients and servers have to adhere
to the connection contract and it seems unreasonable to trust either to do so. Another part is that many
kinds of monitoring (heartbeats, traffic counting, etc.) can be independent of application semantics
and should be factored out. The relative importance of different monitors depends on what properties
are defined as important by the connection contract, allowing monitors to be placed only when
needed. Finally, monitoring on the connection itself allows "QoS-unaware" and "survivability-
unaware" services to have a certain degree of these "added" to them without requiring
reimplementation; an important consideration given the number of existing services that are unaware.

6 - Issues in Merging QoS & Survivability

It is tempting to think that QoS and survivability can simply be composed. However, it is not quite so
simple as can be seen by the following. The later BBN work attempts to add "availability" onto QoS
by controlling a replication factor for the service implementation. This does not seem to capture a
number of key points and seems somewhat redundant. Specifically:

• If a service fails to be available, and hence doesn't respond when needed, isn't that a QoS
failure? How is the failure to deliver a timely response because of service crash different, from
the client perspective, from failure to deliver a timely response due to any other cause that
would be covered by QoS considerations? Why should they be specified independently?

• A service that is up 100% of the time but provides low QoS isn't really "available". Just the fact
that a service is running is irrelevant.

• To meet a given QoS requirement, there is no requirement that a service be continually
available; only that it do what it is supposed to do at the right time. Assume that a service has a
QoS requirement of 99% of its responses to be within a 10 second time window from method
invocation. As a QoS metric, that is pretty clear. However, when mapped to availability, it is

106

less obvious and there is not a clear correlation. If a client sends 1001»»^ and each
takes 1 second to process, there is no requirement that the service be "up 99% of the tone The
service will actually be doing useful work for 100/3600 seconds «3%-ofthe time) So, as long
as it can be brought up fast enough when needed, there is really no 99% availability
requirement. This false issue does not arise if the entire matter is couched as a QoS

. fftitetoto start a service was zero and all services could persistently save their current state
for free, a service could be activated only and exactly when it had work to do. In this case there
would never be a need to have a service running until it was needed, which would obviate die
need for replication except for the persistent state. Again, replication and availability is not

. ^^^^*1*™«^*^ Thisisnotwithoutoverheadfor
replica coordination, so the result is likely to be reduced performance leading to possibly
reduced QoS. Treating QoS and availability separately makes this analysis harder.

I think there are these underlying causes of the above puzzles:

• availability as a client concern
• too few reconfiguration strategies
• QoS not pushed through all levels of abstraction
• inadequate treatment of time
• configuration and QoS "fragility" not considered
• inadequate metrics

Problem: Availability as a Client Concern

The BBN QoS work models the "availability" of a service bound to a connection; in the examples this

This i^^probleqmaticgbecause availability properly applies to .service, while QoS applies to a
connection It is reasonable that a service be replicated in order to provide tiie connection the desired
Oobuthe coupling should be much looser than implied in the BBN work. To see why treating
ÄS2 a property of a connection is not correct, consider the following examples, in
wS thl cient ^satisfied if 99% of requests are handled in a timely fashion with suitable precision

and accuracy.

. Case #1 - Service A determines that it must be available 99.99% of the time to satisfy 99% of

. ^^S^^Lxaäaa that it can be booted quickly enough that it can be idle until
needed and never has to be "available".

. Case #3 - Service C determines that it has enough resources that if available 99.9% of the time
it can satisfy 99% of the requests of 10 clients.

It is not clear how any of these reasonable cases can be addressed by a model where service
availability is a direct concern of the client.

Problem: To Few Reconfiguration Strategies

The QoS work surveyed has a limited number of ways to reconfigure a service or a connection/This
causes a'tendency to view QoS problems as client problems (demands too high) or a server problem

107

(too slow or unavailable) rather than more abstractly as a connection problem that can be addressed in
a variety of ways to maintain the contracted QoS. OUT Evolution Model for OSAs paper enumerates
rebinding points where things like platform, platform type, implementation code class, replication
factor, replication policy, and bound service instance can be changed. When QoS is introduced, a
number of other techniques can be used. For example, consider a QoS contract that requires
responses within 30 seconds, but that allows a null response if the last non-null response was within
the last 5 minutes. In this case, the proxy is free to substitute a null response to meet the timing
constraint in some situations. It is instructive to note that if precision or accuracy is allowed to go to
zero (even if only occasionally), arbitrarily good timeliness can be acheived by generating null
responses in the proxy. This will allow a synchronous client to continue to function (at least for a
while) even if the server doesn't respond. An enumeration of a wider range of QoS-preserving
responses would help not only by providing a laundry list of useful techniques, but would help to stear
the community away from such "solution-oriented" metrics as availability.

Problem: QoS Requirements Not Pushed Through All Levels of Abstraction

Both QoS and survivability must deal with multiple levels of abstraction. A service can only provide
a given level of QoS if the services it relies upon can themselves provide the QoS required of them.
Similarly, a service is survivable if the services it relies upon servive or if the service can reconfigure
to require different base services. Although both communities realize this, at present, neither handles
it particularly well. In particular, problems revolve around mapping requirements at one level of
abstraction down to requirements at lower levels of abstraction, and efficiently reserving resources
through possibly several layers of lower-level services.

A related difficulty is that the QoS policies at higher layers need to somehow be reflected down to
lower layer's in meaningful form. Consider this example. A client requires high availability (in the
BBN model) and fast response. If availability was the only QoS requirement, the existence of the
requisite number of replicas would be sufficient to maintain the contract. However, this is not
adequate, since response time also matters. Different replication policies (primary copy, voting, etc.)
give different QoS behaviors. Further, the messaging policy within a replica group may vary
depending on the QoS needs of the client. For example, normally reads are sent only to a single
replica to conserve bandwidth and processing. However, if timely delivery is crucial, it makes sense
to attempt reads from multiple replicas to ensure that at least one responds in time (assuming of
course that the multiple reads will not compete for the same bandwidth and become even slower).
The policy to follow could vary based on a number of factors, including load on the resources,
criticality of timely response, client value, and previous behavior of the connection (e.g., is it barely
making the timing bound?). To acheive this, it would appear that the high level QoS goal be
somehow pushed down to the replication and messaging subsystem.

Problem: Inadequate Treatment of Time

The QoS work surveyed seems to treat all configurations as having present state only. This neglects
the fact that configurations will change state (for better or worse) either on demand or because of
some random event, and that these changes take some amount of time to occur. In some of these new
states, the service will be able to provide the required QoS and in others it will not. Clients promise
certain invocation rates as part of the QoS contract, which is part of the treatment of time, but
nowhere is the time for a service to change configurations addressed. As noted, this means that
services must be kept in a state where they can respond in the QoS bound, which can be very wasteful.

108

Problem: Configuration & QoS Fragility

QuO treats all responses that fall inside a negotiated region as being of equal worth. That is fineu&r
a! the client is concerned, but is misleading when the ability to meet future QoS goals is considered.
Consider the following two contracts whose timeliness components are:

Contract #1

• 10 sec - 30 sec response
• 15 sec average response over any 10 invocation intervals
• no violations allowed

Contract #2

• 10 sec - 30 sec response
• 15 sec average response over any 10 invocation intervals
I no rnorTZ 1 timeline failure per 100 invocations AND no more than 2 average responses

over 20 sec per 100
intervals

With these two contract fragments,:

. in Contract #1 if the average response time is 14.9 seconds, that is not as safe as if it were 11
TecoXrce a response time of 30 seconds on the next request would cause a violation in the
former case but not the latter ■ J,,.^,

. inTontract #2, if a timing goal has been missed, another timing goal cannot be missed until a
certain number of responses have been made

Further, regardless of the previous behavior of the connection:

. if the service configuration fails, there is an increased chance that the next QoS target will not
be met; this is influenced by how long it takes to restart the service (if possible)

. if the threat environment becomes more hostile, the probability of missing a QoS target
increases even if no targets have been missed so far .

. »Stores, missing QoS targets beeomes more likely, even though none have been tmssed

so far

There needs to be some treatment of how likely it is that a negotiated region will be violatedm the
future. Otherwise, the only time a reconfiguration takes place is when the K&™^™™l*cd,
by which time a QoS failure has occurred. Because the time to reconfigure is not treated.by the
Dre^m body of QoS work, it is not even known how long the connection will be unusable. To make
Er worse some failures cannot be recovered from. As part of evaluating how brittle a connection
rm^r^f nitely gradations of »badness», in either probability of a violation how severe the
Si" Hkely to be^how long it will last, and whether alternative levels of QoS can be reached

from the new configuration.

The BBN work partially addresses this problem of brittleness by requiring a given availability for
SS^TTpJamptol replication factor, which is made part of the QoS region contract. By

109

maintaining replicas, the service never becomes too brittle. While this approach suffers from the
limitations discussed above, it brings out an interesting point that we will exploit more fully in our
work combining QoS and survivability. In the base QuO work, all parts of the region contract were
relevant to the client and all violations were seen by the client (although often they could be fixed by
the proxy). However, the replication factor is not relevant to the client except as a rough measure of
the ability to deliver ywtare QoS. When a contract is violated due to replica failures, only the proxy is
concerned. We are working on extending and formalizing this notion that a contract should have
parts relevant to both the client and the proxy so that QoS can be delivered and brittle states avoided.

Metrics

Both survivability and QoS attempt to say something about the "goodness" of a connection. To this
end, they each define metrics. However, in our opinion, they say very different things. Specifically,
QoS (in its broadest sense) addresses current properties of the connection, whereas survivability is
concerned with the future of the connection. In other words, survivability addresses whether the
connection is likely to maintain a desired QoS. Both QoS work and survivability address restoring a
connection to a good QoS; the difference is that when doing so, survivability considers the ability of
the new configuration to survive whereas QoS does not. This is discussed in a paper Survivability is
Utility.

This has two principle effects.

• The survivability metrics must differ from the QoS metrics, since the latter measure only
current state. To give an extreme example of the difference, consider that placing a service on a
lightly loaded, but very vulnerable machine will score highly on the QoS metric, but low on the
survivability metric. These metrics, and their relationship, are discussed later.

• A Survivability Service will need to take expected future behavior into account when allocating
resources. This necessitates some sort of model of likely future events that could cause a
configuration to change.

Bibliography of QoS Papers
Papers are organized by project.

Rome Laboratory

• Quality of Service for AW ACS Tracking, Patrick Hurley ,Tom Lawrence, Tom Wheeler, Ray
Clark, to appear 4 International Command and Control Research and Technology Symposium,
14-16 September 1998, Nasby Park (Stockholm) Sweden

• Anomaly Management Thomas F. Lawrence, AFRL, internal report, 1997

BBN Cluster Papers

QuO

• Project Overview (1995)
initial objectives

110

Overview of Quality of Service for Distributed Objects (1995)
subsumed by Architectural Support for Quality of Service for CORBA Objects
Object-Oriented OoS for C2 Adaptivitv and Evolvability (1996)

overview
Object-Oriented OoS: Some Research Issues (1996)
subsumed by Architectural Support for Quality of Service for CORBA Obiects
Architectural Support for Quality of Service for CORBA Objects (1997)
key paper - defines QuO terminology & outlines the QuO proxy internals
Specifying and Measuring Quality of Service in Distributed Object Systems (1998)
key paper - defines the QuO proxy architecture & the CDL contract language

DIRM

AQuA and DTRM: QuO Projects Overview (1996)
context example of collaborative planning across a WAN
1997 DARPA Project Summary (1997)
describes integration of QuO + WAN (with RSVP + QoSME) in a test bed

AQuA

Adaptive Quality of Service for Availability (AQuA) (1997)
project overview as seen by BBN
1997 DARPA Project Summary (1997) «„„♦:„„
QuO + Ensemble/Electra + UltraSan; improvements to Ensemble stack, control of replication

level of service from QuO
Adaptive Quality of Service for Availability (AQuA) (1998)
project overview as seen from Illinois; regions used for setting availability (replication) levels

OIT

• Toolkit for Adaptable Distributed Applications (PIT) (1997)
description of planned QuO internal refinements; new start

SRI Papers

• QoS Taxonomy (1997)
good definitions of QoS parameters and benefit function

• Modeling for Adaptive OoS (1997)
describes a multi-level model for application-specific QoS specification that supports
implementation alternatives and variable QoS

• QnS-Based Allocation(1997)
describes a scheduler for resource allocation in a network that is QoS aware

Illinois Papers

. Dependability Evaluation Using UltraSAN (1993)
best short introduction

. Specification and Construction of Performability Models (1989)
detailed introduction, but difficult to follow as a first exposure to the technology

111

SMARTS Papers

• "High Speed & Robust Event Correlation" - Yemini, Kiger, Mozes, Yemini, Ohsie.
Description of the SMARTS inCharge fault analysis system.

112

Appendix A-6

Notes on Command Post Scenario1

David Wells

Object Services and Consulting, Inc.

1. Preface & Caveats
Survivability preserves and gracefully degrades the functionality of software applications.
To do this, the system is reconfigured as components fail and situations change.
Naturally not all reconfigurations are legitimate and of those not all improve
survivability. To allow us to focus on the kinds events that must be survived and the
survival actions that can be taken, we consider survivability in the context of a
(admittedly stylized) DoD command post. This context has the advantage that it is
relevant and understandable by DoD and the DARPA research community, exposes us to
a cross section of real operational concerns, and is potentially insertable without too much
effort into larger DoD efforts.
This paper is an amalgam of a number of DoD and contractor documents related to how
software and data is (and will be) organized and to command post activities. This report
should be read as working notes only.
There is a lot of interpretation on my part, since I have not been able to find a single,
comprehensive description of this anywhere. The material was difficult to sort out, and
I'm by no means certain that I am right. Part of the problem I think is that there are
architectures at several different conceptual levels (DoD-wide or some smaller unit like a
JTF), at several different distances into the future (the ultimate goal of fully portable
everything and various transition paths from current practice), and differing ties to
operational considerations (care or not care about autonomy of command when allocating
resources to tasks). Since our objective is to provide survivability mechanisms, I ve tried
to sort this out into something that is far enough out to be technically interesting, but tied
enough to current reality that it is plausible for use in DoD in the next 5-10 years. For
instance since I dont believe that operationally DoD will ever resemble arbitrary meta

This research is sponsored by the Defense Advanced Research Projects Agency and managed by Rome
Laboratory under contract F30602-96-C-0330. The views and conclusions contained m this document are
those of the authors and should not be interpreted as necessarily representing the official policies either
expressed or implied of the Defense Advanced Research Projects Agency, Rome Laboratory, or the Umted

States Government.
© Convright 1997,1998 Object Services and Consulting, Inc. Permission is granted to copy this document
prodded L copyright statement is retained in all copies. Disclaimer: OBJS does not warrant the accuracy
or completeness of the information in this document.

113

Appendix A-6

computing with totally fungible resources allocated without regard to a command
structure, I've concentrated on the clustering and ownership of resources that I believe
will exist into the foreseeable future. The discussion also brings in information I've
picked up at various briefings and through reading general military history, which tends
to have a lot of side information about how the military is organized.

The paper is organized as follows. Section 2 summarizes the salient points of how DoD
wants to have its general computing environment organized in the future. Section 3
discusses what these general software characteristics mean in the context of a command
post. Section 4 provides an example of an activity that takes place in a command post
(air campaign planning) and how (at a coarse level) it uses the computing resources and
how the various parts of the activity interact. These will eventually (in another
document) be used to: a) determine survivability requirements and strategies, and b)
define a survivability scenario for the command post.

2. Observations on Characteristics of DoD S W & Operations

DoD wants as much portability and fungibility of resources as possible, given operational
considerations. They are obviously sick of stovepipes and incompatible solutions.
However, I don't think that means they will ever get to either homogeneity or total
fungibility. They will always have a big range of machine capabilities because they need
data servers, number crunchers, embedded, and portable devices. Further, they need to
upgrade and since there is so much HW and SW out there, they can't possibly change it
all at once. Also, heterogeneity is good because it helps eliminate catastrophic design or
implementation flaws from killing everything. Bottom line for us is that there will be a
lot of flexibility of placement and service type, but not unrestricted in either dimension.

DISA TAFEM & TRM talk about a hierarchy of services. They are trying to standardize
the base things everyone uses, like OS, main data formats, small number of
implementations of a given functionality (and then only to get robustness). I think we can
assume that this happens eventually, since it is a big cost savings and improves
interoperability in a pretty easy way. At each level down (they talk about 3-4 levels), new
services can be added and ones from higher levels can be customized. These then
become standard services for that piece of the hierarchy. If sibling areas both customize,
they appear to interoperate by the conventions of the parent service; possibly the
functionality gets pushed up to the parent level. Note that unlike other organizations,
DoD is in the position of being able to enforce its internal standards if it wishes. The
further down the hierarchy you get, the less scope there is for customization, but the
larger number of customizations there are, since each affects smaller groups (ultimately
only one user).

There is a commitment to the Model-View-Controller interface model. There will be a
set of standard ways to display data sets on different kinds of devices. This set will be
extensible.

There is a distinction between "common", "shared", and "replicated" services and
interfaces. "Common" refers to code, interface, or data format commonality; maps will
be in a common format and everyone will all use the same spreadsheet. We'd think of

114

Appendix A-6
this as being common IDL types. A "shared" service means that the instance is being
used from multiple places; a big database in Washington would be shared. A shared
service is shared either to ensure consistency for its users or because it requires resources
or environment that cannot be replicated. A "replicated" service would be physically
replicated code and data. The replicas might be synchronized, but for operational reasons
they may be allowed to drift apart by some amount. Examples would be databases of
plans or maps, where the cost of synchrony would make them unusable and some
discrepancies can be tolerated. The kinds of discrepancies allowed are situational; some
differences matter more than others and it is not just volume or time that matters. For
example, not knowing exactly how much ammunition you have is OK, but not knowing
the current theater boundary is not.
Commanders have missions and have sufficient authority and resources to achieve them
(hopefully). A unit may be given different missions, but there is a chunkiness to units
that precludes them being taken apart to have portions of themselves reassigned. At a
human level, this is for training and morale reasons. Computers are seen as a piece of
equipment like an artillery piece and neither will be taken away from their owner.

At each level in a command structure, there are discretionary resources that may be
allocated by the commander to any mission of the sub-units. These may be reassigned at
will by the commander. Examples are brigade level artillery, which may be used to
support any sub-unit of the brigade. This may be used to support an adjacent brigade, but
only at the discretion of the commander owning the artillery. It will not be reassigned by
someone else. The commander at the next higher level can use some of his discretionary
resources or reassign a sub-unit. The higher up the chain you go, the greater the amount
of resources and the bigger they tend to be. For example, you might find field artillery at
one level and tactical air support somewhere higher up. I would assume this model
would hold for computing resources also.
The TAFIM and TRM try to categorize services and support functions. This may lead to
some rather arbitrary partitionings, but some categorization seems necessary just so they
can comprehend a problem of this size. Efficiency is definitely to be sacrificed in order
to get understandability and well delineated functionality so they can determine who is
responsible for what. Even if this means that some actions get done redundantly.

Databases in particular follow a model of a big, remote database where ground truth
(perceived) is held, with local caches made from it as views. This seems to be pervasive.
This is the model we saw back at TI on the FRESH naval operations planner that was
eventually deployed in Hawaii. Sometimes the cache is refreshed on a schedule (e.g.,
once a day) and sometimes it is refreshed on-demand. It is important to realize that no
one expects cache consistency to be maintained like you get in a memory cache; it is not
needed operationally and is impossible to achieve. They are comfortable working off
stale information as long as they know how stale it is and how fast the relevant parts can
physically change. The refresh rate is tied to this. The naval planner was refreshed daily,
because ships dont move that fast. For urgent information there were side channels for
messages.

115

Appendix A-6

Peers need to exchange some information across boundaries. The military works on
regions of responsibility (probably the wrong term, in physical partitioning these are
called "theaters" at least at the large scale) and units are expected to keep out of each
other's way by staying on their side of the boundary. That way you don't shoot your
friend. Limited information has to cross these boundaries; only changes in the boundary
conditions or local state that may cause the boundary to get changed in the future. No one
needs to know all details of what their peers are doing, only how it is likely to affect
them. These boundaries can be exploited.

The DISA SHADE (Shared Data Environment) is an "infosphere". The idea is standard
data formats, databases, Schemas, meta data, etc., so that commonly used data is managed
at a higher level than the producers and consumers. One interesting thing is that they are
defining standardized "data segments", which are partitioned data sets for particular uses,
along with all the DBMS, scripts, data, schema, and so on so they can be installed
wherever they are needed quickly. They already have a few it appears.

SHADE differentiates between "unique" (local and not shared with no particular format
or portability requirements), "shared" (used by two or more groups and must have a
common schema), and "universal" (used by many groups and managed outside all of
them) data sets. SHADE also makes a distinction between databases used operationally
and kept up to date but supporting only simple transactions, and warehouses that are
culled from operational DBs periodically and against which complex planning operations
take place. The warehouse may store raw data or abstracts. SHADE assumes legacy DBs
and pairwise communication of data in proprietary format for the foreseeable future.
SHADE distinguishes between "distributed DBs" that are kept synchronized, "replicated
DBs" that may have temporal differences even though there is a master through which
updates are made, and "integrated data servers" that are shared by several applications.
I'm not sure what the point of the last one is.

3. Translating the Observations to a Mobile CP

Here's what I think a mobile CP will look like, given the above. We need not simulate all
of this, but right now I want context.

3.1. Relationship to Other Units

A mobile CP will need to communicate with its subordinates, with its US or NATO
country base (where at least a portion of itself remains), and with peers. SHADE
universal data sources will reside outside the CP at its base. SHADE unique data sets
will reside in the CP. SHADE shared data sets will either reside in a peer or be shared
within the CP.

3.2. Communications

Within a CP, communications is by LAN. There may be multiple LANs with bridges. A
LAN may be duplicated for reliability.

There is broadband communication to/from the base, but this may be interrupted or
assigned elsewhere. Think of a wide WAN.

116

Appendix A-6

There is a very wide channel from bases to CPs via satellite that is used for broadcast
messages. These are scheduled to correspond to data servers (DS) refresh cycles. This
communications path is non-interruptible unless the CP's receiver is down. BADD is the
model for this.
Communications to subordinate units is by a WAN by radio or local phone lines. It is
lower bandwidth and potentially unreliable.
Communications to peers are by WAN, but are more reliable than to subordinate units
because they are not moving and are sited to make communications more reliable.

3.3. Data Management

Operational data is either fed directly from sensors to applications or is stored in a DB
local to its consumers. If stored in a DB, it may be accessed by many clients.

Right now, messages from the outside appear to go directly to their clients. There is a
move to insert a message DB that stores all messages arriving at the CP. Messages would
then be validated and cleaned up by an application before going into the DB. Views of
the DB would be used to route messages to the correct consumers, or consumers could
query the message DB. In this picture, messages are treated like any other data item, not
as some fundamentally different thing like they are now.

Access to externally maintained DBs is through Data Servers (JTF lingo) that convert
queries, produce views (possibly by combining and filtering several DBs), and possibly
cache. If there is caching, there may or may not be a requirement that the cache and the
source DB remain consistent. Whether they are required to be consistent (and how
consistent) depends on the needs of the clients and will be specified.

Updates to external DBs appear to go through the Data Server as well, although I'm not
sure. At least in the naval planner (FRESH) TI did, the equivalent to a Data Server was
read only and the application could never update; it could make recommendations for
actions that would affect the DB, but the DB only changed when some external input said
the situation had changed. For instance, the planner would read the DS to find out a
situation and make some recommendation to move some ships to respond; the DS would
be maintaining a cache of some snapshot of the operations DB. This recommendation
would go to the operations people (not back to the DS or DB). Operations would decide
whether to follow the recommendation. If they did, they would issue an order, which
would be executed, which would cause the state of the world to change, which would get
reflected in the DB, which eventually would be reflected in the DS.

A DS maintains a cache if the data is bulky, frequently used, or the link is likely to go
down. Cache updates can be periodic if either the DB changes regularly (e.g., a target DB
where potential targets are identified daily by some upstream planner that works on a
daily cycle), the clients run periodically (e.g., more detailed targeting decisions done
daily), or the data is assumed to change slowly enough that reasonable decisions can be
made with data no more than some age. Cache updates can be forced from the DB if
deemed significant (e.g., a bridge destroyed). Cache can be refreshed by a DS query in
response to a client request if the client determines it needs current data for some purpose.

117

Appendix A-6

There can be multiple DSs fronting the same DB. These would typically be in different
CPs, or at least for different functions within the same CP. If there are multiple DSs,
their caches may or may not be kept consistent with each other; the issues are
approximately the same as for consistency between the DB and a single DS cache.

In the event that a cache update is not received, a client of the DS could hook to the
corresponding DS in a peer CP. This would be at slower speed and possibly somewhat
different data quality, since the DSs need not have the same view and the peer may have
less detailed information. An example would be intelligence information, where the local
DS would try to have all detail relevant to the CP's theater, but only a summary of similar
information relevant to the theater of a neighboring CP. Accessing a peer DS should be
considered an unusual event.

Information locally generated may be stored in the DS cache or separately. This may or
may not propagate back to the DB. If not propagated back to the DB, it probably does not
go to a peer DS either, although comparable information may be sent as a message.

3.4. Operating in the CP

A CP does all of its processing locally and is assumed to have enough resources for both
operations and planning. No tasks are exported to base or peers. If such external
processing is required, say for satellite image analysis, it is performed by the base or peer
and placed in a DB that is then accessed by a DS in the CP. It does not seem that a CP
ever actually schedules anything remotely. This might be because of the command
structure, or just to have a looser processing coupling. If the CP needs to have remote
work done, it ships the data along with a request, but does not block.

Within a CP, user interfaces and users obviously need to collocate. It is also the case that
users doing similar things tend to be collocated as well; hospital staff in hospitals,
logistics people together, etc. So similar function will tend to have at least its external
parts together.

Each functional area in the CP will have dedicated computing corresponding to dedicated
physical resources attached to the unit. In addition, there are pool resources for the CP.
There may be 1-2 levels of pool within a CP.

Resources cannot be "stolen" by another CP.

Critical functions are kept up by an "anchor desk" that serves as the root of that
functionality. In our terms, an anchor desk is allocated credits to keep its functions going
and constitutes a sort of perpetual user. An anchor desk is logically the point of contact
for people between functions. There is a distinguished "Survivability Anchor Desk"
through which monitoring and modifications of survivability parameters take place.

3.5. Service Configurations

Some services are pinned up by anchor desks.

Shared services may be either pinned open by an anchor desk or created by collaborators
for the purpose of the collaboration.

118

Appendix A-6

A replicated service may be synchronized or may be allowed to drift the same as a DS/DB
combination. The clients must specify requirements. This is a place where QoS enters the
picture Since any replica can be accessed by a client, the QoS specification is interesting
because it varies with client(s) and replica(s) placement. It is possible to start a new
replica close to a client without affecting other client/replica QoS except for the effect of
the new replica on the synchronization. This looks to me like a very useful area to
explore.
A dedicated service may be started anywhere desired by its client subject to resource
ownership, resource availability, executability, and QoS.

3.6. Collaboration

Collaboration takes place in several ways.
Within a given function in a CP, the collaborators are pretty much interchangeable; all air
campaign planners (human and program) are more or less the same and work can be
partitioned between them. These all access the same DS, so they see the same data.

When collaboration takes place between similar functions between CPs, such
interchangeability does not exist, since CPs are in charge of specific theaters or operations
(like air) you can't substitute one CP for another in a collaboration without violating
these boundaries. Further, peer CPs, even when accessing the same DB, go through a
different DS, so they probably do not have exactly the same data sets.
Collaboration between dissimilar functions like weather desk and logistics desk requires
those specific functions, although the quality can be allowed to degrade. They are not
interchangeable since you can't substitute a weather report for a target list.

4. Example of CP Activity
One of the actions that takes place in a CP is Air Campaign Planning (ACP). ACP is
basically the detailed selection of targets to bomb and the generation of the detailed
orders to make that happen.

4.1. The Command Decision

ACP starts with a commander (probably a general) evaluating the overall situation and
determining the kinds of targets to be attacked in a particular area. For example,
communications facilities and airports around Basra. To make this determination, the
commander views a large map of the theater overlaid with relevant features. These are
the kinds of things you can overlay on a StreetFinder kind of map (e.g., airports,
churches, parks), their military equivalent (e.g., airports, factories, communications
facilities intelligence headquarters), and mobile things such as unit positions and
weather There may be similar maps at lower resolution for adjacent areas that are the
responsibility of a peer. Generally, organizations stay out of each other's areas in order to
prevent confusion and friendly fire casualties. Information about adjacent areas is given
because these boundaries are not always perfectly respected and because enemies
typically like to exploit the seams between units where the coordination is weaker. In

119

Appendix A-6

addition, there will be theater-wide information presented that does not fit to a map. For
example, the fact that there is a threat of biological warfare attacks or that certain doctrine
such as no attacks on power plants may be in effect. Commanders also may have wire
service feeds; in the Data Wall project at Rome Lab, the commander has a CNN feed so
he can see what is being said about the operation, since all things have a political side.

4.2. Map Overlays

Each map overlay contains a different kind of information (physical features, threats,
weather, logistics availability & position, etc.) and is managed by a separate group of
people and stored by them in a separate DB under their control. For example, intelligence
analysts identify threats and targets, meteorologists create weather overlays, quartermaster
people maintain the logistics overlay, etc. In the JTF architecture, each of these functions
would be managed from an "anchor desk". Some of this information is pretty static, such
as the base map and many kinds of features, while others such as unit positions and
weather may change relatively quickly.

Each overlay DB is created by using (possibly) several more primitive data sources, each
of which is in a DB. For example, the threat overlay is produced by intelligence analysts
who look at satellite images to find surface to air missile batteries, communications
patterns to determine where orders are being sent to/from, ground observations, order of
battle information (e.g., an Iraqi division may be known to have a certain number of
SAMs, even if you can't see them).

Each kind of underlying data resides in a separate DB closely tied to how it is produced.
The data in an underlying DB may be raw or may have been interpreted by some other
analyst. For example, satellite images are interpreted by experts who do little else
because of the difficulty in interpretation. They would examine raw images and tag and
identify (possibly tentatively) items of interest in the images. They would not attempt to
ascribe an importance to what they find. There may be feedback from higher levels
asking such analysts to look for particular kinds of items (e.g., look for SCUDs), since
there is too much imagery for every image to be examined in great detail. Image analysts
are supported by software to identify images of interest; for example, successive images
of the same area can be diffed to avoid having to redundantly analyze essentially the same
image, and it is easy to find edges, reflective surfaces, hot spots, etc., that are likely to
represent man-made items. A lot of model based AI tools are used in this to refine the
filtering (e.g., "find long objects on trucks near the edge of woods also near a concrete
roadway").

Data in the various DBs may be of different ages, as can information within a single DB.
Sometimes a history is needed to draw a conclusion. For example, something appearing
in a satellite image may be hard to identify, but being able to tell that it moved from one
image to the next may give important information about what it is.

An intelligence analyst may access several different kinds of DBs in order to draw a
conclusion about a threat. If not all those DBs are available, the analyst will be less
certain about the conclusions, but can still function. Similar for other kinds of analysts.

120

Appendix A-6

All of the analysis activities are supported by software tools of some degree of
sophistication. There is a range of processing power needed for these from image
enhancers up through weather modeling.
Each of these items that are visible on the overlays can be queried (by mousing) to find its
properties as reported by the analysts who prepared them. The general typically will see
the conclusions drawn about each kind of item on the overlays and only drills down to the
underlying information from which it was deduced as needed. This might be the case if
he questions how certain a conclusion is. Management and modeling of uncertainty is a
current DARPA research initiative.
Given these overlays, the commander and his staff decide what they want to do. This
may involve air attacks against certain kinds of targets in a certain region (airfields and
communications near Basra). The commander issues orders that an Air Campaign Plan
be made to accomplish this.

4.3. Air Campaign Planning

ACP consists of determining which targets meeting the criteria specified by the
commander will be attacked, determining how to attack them, and issuing orders for the
attacks Depending on the number of targets, the campaign may be performed by several
air commands. If multiple air commands are involved, the ACP will be collaborative
among between the CPs at those air commands. Those CPs will most likely be located at
the air commands, which may be airfields or aircraft carriers.

If multiple air commands are involved, the targets are partitioned among them in some
way so that planes from multiple commands do not get in each other's way, either at the
target or en route. This is done by creating "corridors" in which flights must stay
Corridors have both a spatial and temporal dimension, so that the same space can be
flown through at different times. Unless aircraft are to meet somewhere en route, the
only coordination between commands are in the choice of targets and corridors dunng
planning and the adherence to corridors during flight.
ACP starts by retrieving a list of targets from the DB that was used in generating the
target overlays. More detail may be obtained than was presented to the general or the
level of detail may be similar. At this point, the objective is to partition targets among air
commands. Once this is done, the CPs stay basically separate except if they want to
renegotiate targets or when setting corridor boundaries.
Within a CP, there are many human planners, all of whom do the same set of tasks, only
for different targets. Planners query databases to find details about targets, available
aircraft and munitions, threats (such as SAMs) than can affect the missions, and
information about other features (such as hospitals) to avoid collaterally damaging. The
information includes location, importance of its destruction, physical features relevant to
attacking it (you need to know how thick a runway is to know what you need to drop on
it and you attack runways lengthwise, not widthwise). Some of this information is
generic to the class of target, while other is specific to a particular target.

Individual human planners select targets (individually or in sets) and start assigning
resources to attacking them. For each kind of target, there is a list of munitions that can

121

Appendix A-6

be used to attack it with varying costs, probabilities of success, and minimization of
collateral damage. Different munitions can be carried by kinds of different aircraft.
Different kinds of aircraft have different ranges and there is doctrine that tells what kind
of environment certain kinds of planes can be flown into ("don't fly this second tier
aircraft into an area where you don't have air supremacy"; i.e., only you have any planes
left). Planes start at different bases, which tell where they can get to. The planning
problem is basically to maximize some objective function consisting of maximizing the
probability of the largest number of high value targets damaged or destroyed while
minimizing aircraft loss, munitions cost, and collateral damage. The relative weights of
these parameters can be changed for different situations, as can the values of targets.
Assignment can be done greedily or there can be a lot of hypothetical assignment that can
be retracted and resources assigned differently. For example, the optimal assignments to
early targets might cause you to run out of the correct munition type for some lower
valued target, so you use the next best munition on the high value target in order to have
it available for the lower value target. The reason you might get into this situation is that
a smart weapon might give a somewhat better way than a bunch of dumb bombs to
destroy a key target, but its use there would make it unavailable for use on a lesser target
where possible collateral damage to a nearby hospital from a dumb bomb would be
unacceptable. There is a lot of work on software planners to aid in this scheduling
problem, but for the foreseeable future it appears that human planners will be heavily
involved, at least in validating and setting priorities. In the course of this, the planners
access DBs of consistency criteria (this plane can't carry that bomb) and policy criteria
(under the current rules of engagement, dont damage power plants) that pose additional
policy constraints.

Once targets are assigned, orders must be issued to load the correct munitions on the
selected planes and give them route instructions. I don't know if this is part of ACP or is
delegated to a yet lower level of CP. For our purposes it really doesn't matter. These
detailed schedulers will again access parts of the same DBs as the ACP, although they
will access only those slices of immediate concern to them. They will also access other
DBs for logistics (where exactly are those munitions?), crew information, etc., that are
needed for getting a flight scheduled, but that are not needed by ACP.

There might also be a tie into the logistics system to order more munitions and into a
maintenance system to schedule preventive maintenance on the planes most heavily used.

Summaries of the orders are issued to AW ACS so that they can monitor the mission,
including compliance with the corridors.

After missions are completed, their success is evaluated based on information from the
same kinds of DBs as were used in the initial planning; the question now is whether the
targets are still there and healthy. The cycle then starts over again with the commander
deciding which targets to attack; he may choose to attack a different class of targets, even
though some of the original ones are intact.

The cycle of ACP and missions is currently (I think) 24 hours, They want to reduce it,
but there is some irreducible minimum even if the planning becomes extremely fast, since

122

Appendix A-6
missions have to be flown, crews need to rest, and damage needs to be assessed. Thus
ACP will always be periodic.

4.4. Processing Assumptions

ACP needs access to a number of DBs that originate external to the ACP function. They
will probably be fronted by DSs local to the CP. ACP is performed on a cycle. It is
important that an entire plan be consistent to avoid redundant attacks or conflicting
operations. This appears more important than using the absolutely most current
information. Partly this is because many of the attacks are by human pilots who can
compensate or break off an attack where the target has moved. The effect that this
"dumpiness" of scheduling has is that it defines the DS cache refresh rate.

It is more important to end an ACP cycle by the time the next flights can take off than to
achieve an optimal plan as long as the plan produced is valid. As long as every plan
created is acceptable, you can quit at any point you need to when you run out of time and
processing power. The way ACP is done takes care of this. In effect, it is OK that the
ACP is essentially a batch system, since airplanes must take off in batches also in order to
protect each other and coordinate activities. There is no desire to get a plane into the air
as soon as it can be given a payload and a target.
Rather than continually update the ACP DS cache, they are attempting to deal with
mobile targets by reducing the cycle time so that the snapshot in the cache is less out of
date Although I could not find this, I would guess that the messaging system is used to
notify planners that targets have moved or changed in some significant way. Targets no
longer valid would then be manually removed from the target list and their resources
freed for other missions. This would be similar to what happens when targets and
missions are renegotiated between CPs and planners as described previously. If this
model is right, that would make the message system a sort of differential DB.

Planners within a CP will grab targets and resources from the DB with little coordination^
When they renegotiate and relinquish resources, they will simply put them back in the DB
where they will be available for the next planner who accesses them. Planners at this
level are physically close together and can communicate these directly, by phone, or by
message Renegotiation between CPs is more significant, since it involves shifting a
boundary. Such requests are negotiated by anchor desks at the CPs involved. This is
fairly heavy weight and will probably not be done after a lot of detailed planning has
happened, since it is likely to invalidate a lot of work already done.

Creating mission orders from target/munitions/aircraft pairings requires more
coordination, since the aircraft must physically either fly together or avoid each other
This may be done by a single planner (or small group of interacting planners) taking all
flights between a pair of places and coordinating their orders. These flight groups must
then be assigned corridors, which requires interaction between the planners for the
individual flight groups. There is probably some iteration here, since you dont know
what corridor you need until you plan, but you dont know you can get a corridor until you
see if it conflicts with someone else.

123

Appendix A-6

ACP is very intense for a while, and then resources shift to other tasks. Some of these are
related to the missions, like monitoring status (loading munitions, air traffic control, etc.),
preparing briefing material for pilots and commanders, assessing previous mission
success. Others are just other things that go on in the CP that are only tangentially
related, like ordering munitions or scheduling. Other activities in the CP are totally
unrelated.

A planner probably has a PC class machine that does mostly display of maps, resources
lists, messages, orders being produced, etc. It acts as a personal local cache of data being
used by that planner. Larger tasks like route finding, scheduling aircraft, checking
constraints, etc., are most probably performed on behalf of individual planners on shared
machines in the SPARC class or higher. These machines form a pool that can be used for
multiple purposes, not all of which are related to ACP. Use of the pool is dictated by the
situation. An interesting idea is that as the ACP plan gets better and improvements get
smaller, there is lower priority for ACP compared to other activities. Also, there are shifts
between the various ACP functions throughout the day. It does no good to have great
target selection if that comes at the expense of getting no orders issued; it is far better to
have fewer targets selected and actually issue orders to attack them than to select many
targets and attack one.

Some DBs including aircraft resources, munitions, and received messages will be local to
ACP, while others including maps, targets, weather, doctrine, intelligence, etc., will be
remote and will be served by local DS caches. As noted before, several of these caches
can be allowed to be out of date and refreshed on a schedule. Each CP has its own
caches.

Local plans need not be shared with peer CPs. The partitioning of targets and resources
among CPs must be shared, as must the eventual determination of corridors. The DS
caches of similar data at peer CPs will in some cases be identical (weather over targets,
doctrine, etc.), will sometimes only be similar (features relevant only at one CP will be at
a coarser level in peers), ad sometimes will not overlap at all (weather at the peer base).
This affects the ability to use cached data from peers should the local DS fail. Note that
since DISA has the notion of DB segments (data and DBMS and scripts and schema), it
should be possible to download a segment from the DB to replace a failed DS given
enough time.

124

Appendix A-7

Survivability is Utility

David E. Langworthy and David L. Wells
Object Services and Consulting, Inc.

{del,wells}@objs.com

Abstract

The paper explores how Utility Theory (a sub-discipline of
microeconomics) can be exploited to define metrics to evaluate the
successfulness of survivable systems and that can be used by
Survivability Management Systems to plan actions to ensure
system survivability. The current lack of such metrics is a serious
impediment to progress in the development of survivability

techniques.

1. Overview of Survivability Concepts

The goal of survivability [1,2] is to provide system-wide integrity well beyond
the "islands of integrity" approach of fault tolerance and high availability [3]
techniques, which enable reliable data storage and reliable on-line processing
respectively. In survivability, the focus moves from hardening individual
components to ensuring that every client has access to the services it requires.
Survivability takes a variety of proactive and reactive steps in an attempt to keep a
system in a state such that it can satisfy the expressed current and future needs of
the system's users. To do this, especially using automated tools, requires metrics
that can be used to measure the "goodness" of various system configurations that
can be reached. Utility theory provides some of these metrics.

While it is true that high availability is extremely useful in providing
survivability, availability can be provided without achieving survivability as
illustrated by the following short example taken from our proof of concept

survivability service. .
p^pi^H Service Example: We assume an Object Service Architecture such

as CORBA that has been extended to allow a service to be replicated for high
availability. In the example, there are only services and hosts. Any differences

This research is sponsored by the Defense Advanced Research Projects Agency and managed by
Rome Laboratory under contract F30602-96-C-0330. The views and conclusions contained in this
TocZm^M those of the authors and should not be interpreted as necessarily representing the officml
poZ.TeZreZrLd or implied of the Defense Advanced Research Projects Agency, Rome
Laboratory, or the United States Government.

© Copyright 1997, 1998 Object Services and Consulting, Inc. Permission is granted to copy
this document provided this copyright statement is retained in all copies. Disclaimer: OBJS does
not warrant the accuracy or completeness of the information in this document.

125

Appendix A-7

between the hosts or particulars about network topology have been abstracted
away. There are two essential services A and B each made highly available with
three replicas. Each replica consumes an entire host. In the initial configuration,
there are 6 running hosts. At this point each service is highly available and the
system as a whole is survivable.

A(1) A(2) A(3)

B(1) B(2) B(3)

A series of failures or an information warfare attack on B might eliminate both
of B's backups leaving A completely intact. A and B's high availability substrate
has accomplished its goal. There has been no change in perceived function or
performance despite multiple failures. However, it is clear that B has become
vulnerable. Since B is essential to the functioning of the system, the system as a
whole is equally vulnerable. The system's survivability is compromised. The
study of availability does not consider the contribution that a service makes to the
overall system.

A(1) A(2) A(3)

\ \
B(1) B*2) B^)

A survivability architecture manages the system as a whole. The ability of this
configuration to deliver functionality into the future has been impaired. If
attempts to bring B's replicas back on line fail, the survivability service might try
to increase the system wide survivability by sacrificing the availability of A.
Since A and B are equally important, a second replica for B is more important to
system wide survivability than a third replica for A. Once this realization occurs,
the system can be reconfigured to improve its survivability.

A(1) A(2)

\
B(1) sm

B(2)'

After a second replica for B is brought up, this small system is once again
balanced. Given the existing resources, the survivability is maximized even
though A is now less available than it was before the adjustment. The risk of a
failure perceived by an end user is minimized.

2. Measuring Survivability

The usefulness of a survivable system can be judged in several ways:
• how useful is what it is doing now?
• how useful is it likely to be in the future?
• if it breaks, can it be repaired so that it can again do something useful?

There are a number of concepts from utility theory that are helpful in
answering these questions. Collectively, they provide us with metrics that can be

126

Appendix A-7

used to evaluate the desirability of various system configurations from a
survivability perspective. These can be used to allocate resources, plan
administrator actions, shed load appropriately as resources dwindle, and warn
users about unstable conditions.

3. Applying Utility Theory to Survivability

Utility theory is the study of decision making under risk and uncertainty among
large groups of participants with differing goals and preferences [4]. A participant
has direct control over the decisions he makes, but these decisions are only
indirectly linked to their outcomes. The outcomes depend on the decisions of
other participants and random chance. For example, from the perspective of a
system administrator attempting to configure a system to survive a collection of
faults and threats, a configuration which continues to provide service is clearly
preferred to one that does not. However, the administrator cannot directly enforce
the preferred outcome; he must choose a relatively small number of administrative
actions out of a huge number of possibilities and hope these lead to the desired
outcome: a system that operates over time. The actual result will depend on the
decisions of other administrators, adversaries, and chance.

The term "utility" is a measure of preference that can be determined and
expressed in many different ways. The most common expressions of utility are
the supply and demand curves from microeconomics. These graphically represent
a supplier's utility for revenue and a consumer's utility for a product. In this case
the units are dollars and units sold, both integer values. Utility can also be
expressed as an ordinal preference. For example, athletes prefer to come m first
rather than second and second over third. A dollar value might be assigned to this
preference in professional sports, but this would only be a secondary
approximation. Binary utility is relevant to survivable systems. If a user
absolutely requires a service, that requirement is either met or failed.

The concept of utility can be used to quantify the goodness of states and actions
in a survivable system. System states can be compared using utility measures to
determine which is preferred, and as a result, which survival actions should be
taken in a attempt to move the system to a better state or avoid worse states.

The utility of a system state or administrative action depends upon the services
that are currently running and the future configurations that can be reached.
Future configurations need to be considered to differentiate between a rigid
configuration that offers good current performance from a flexible configuration
that offers slightly lower current performance but is more resilient to faults and is
more likely to continue offering good performance. A balance must be reached
between present performance and future performance. For example, for most
systems the potential configurations a year in the future are not nearly as
important as the configurations the system could reach during the next 12 hours.

Utility can have multiple definitions, depending on the overall goals to be
achieved. For example, one utility function could value maximizing the work
performed, another utility function could value minimizing the likelihood that the
level of service provided falls below some threshold, and a third utility function

127

Appendix A-7

could value minimizing the probability that information is divulged to an
opponent. All are equally valid, and depending upon circumstances could in turn
be valued to different degrees. This would result in a combined utility function
that would be some aggregation of the underlying utility functions.

We now define a model of the system whose utility will be measured and then
present several useful utility measures.

System Model: At any point in time, the system is in some configuration. A
configuration consists of all the resources in the system and the dependencies
between them. At the lowest level are physical resources such as computers,
networks, sensors and actuators. The dependencies at this layer follow the
physical topology of the system. Layered above the physical resource are
services. A service can depend upon a physical resource or another service to
deliver its functionality. The configuration determines the functionality that users
perceive at the moment and the constrains the range of functionality that they will
perceive in the future.

The configuration of the system can change as events occur. There are three
sorts of events which occur: those initiated by possibly automated system
administrators, those initiated by Nature, and those initiated by an adversary. The
transitions initiated by administrators are generally beneficial, for example,
starting a new replica or shutting down a system for scheduled maintenance. A
detrimental administrator-initiated action such as shutting down the last
operational replica in an attempt to repair a different one is relegated to Nature in
this analysis. We blame Nature for the entire spectrum of faults that typically
plague a computer installation including power failure, disk crashes, programmer
errors and the like. The only time Nature acts in our favor is when it stops, for
example, when it stops raining and our microwave link works again. An
adversary is capable of coordinated malicious actions and deceptions. These
actions include launching viruses, physical destruction of sites, and security
violations which compromise sensitive data.

In general, an event can occur at any time. Each event has a probability of
occurring within some time interval and events can be correlated. The probability
of a configuration existing at a certain time in the future is computed based on the
current configuration and the probabilities of the transitions required to reach the
new configuration. The example below shows one configuration, C, at time Ti
branching into n possible configurations at T2.

C,

This computation is necessarily complex because multiple paths of transitions
lead to the same configuration. To simplify the problem, our current analysis
divides time into discrete, fixed size intervals, and we concern ourselves only with

128

Appendix A-7

configurations at time interval boundaries. This allows multiple events to occur
during a time interval. Under this simplifying assumption, the fanout at each time
step is still very large, so exactly calculating the range of possible configurations
even a small number of steps into the future is infeasible. Further, calculating the
probability that an adversarial action occurs requires game theoretic constructs.
Also, except in trivial cases, transition probabilities can be at best estimated. In
future work, we plan to develop a means to project a configuration along
"interesting" paths that provide a representative sample of the space of possible
configurations at some future time, to model continuous time and variable size
time intervals, and to analyze the effect of imprecise estimates of transition
probabilities.

In any configuration, every client of a resource (at any level of abstraction)
receives a benefit from receiving the service the resource provides. This is
expressed as a benefit function, B, that maps a description of the service being
provided to a value received. The service to be received can be described in many
ways, including using quality of service (QoS) concepts such as timeliness,
precision, and accuracy of the results to be provided. This paper does not address
the particular form of a service specification.

The benefit a client receives from a service is accrued only if the service
completes its task; i.e., an instantaneous, ephemeral connection to a service
provides no value. Thus, every benefit function must include a duration over
which the service must be provided in order to attain the specified benefit. In
principle, this could be a number of invocations or a time period. In our current
analysis we restrict the duration to the fixed size discrete time intervals defined
above; a client receives the benefit only if the service is still being provided at the
end of the interval. Again, we hope to generalize this to continuous time and
mixed interval sizes in future work.

Utility: In general, utility is a measure of the desirability an outcome. In this
case, we define the utility of a configuration, U(c), to be the aggregation across all
clients in a configuration of the value of the services they receive. Recall that
utility can have multiple definitions, depending on the overall goals to be
achieved. All are equally valid, and depending upon circumstances, could in turn
be valued to different degrees. This would result in a combined utility function
that would be some aggregation of the underlying utility functions. Because there
can be multiple utility functions, we differentiate between them using subscripts
when necessary; e.g., Uwork(c). Different utility functions are created by defining
different aggregation functions. Two of these utility measures are discussed m
more detail below. For now, it is sufficient to accept that for any given
configuration, it is possible to compute the values of one or more utility functions.

Expected Utility: As with the benefit provided to a client by a service, a
configuration provides a given utility only for tasks it completes. In our current
model, this is determined at the end of a time interval. Since a system that begins
a time interval in some configuration c may end it in some other configuration that
provides a possibly different utility (based on the services that it the new
configuration provides), a more useful measure of utility is the expected utility of
a configuration c, EU(c). EU(c) measures the benefit of a collection of potential
configurations, C, that can be reached from c in one time interval. It is the

129

Appendix A-7

probability weighted sum of the utilities of each individual configuration that can
be reached. The probability function, P(cO, is the probability of a being
instantiated out of all the configurations in the set. Of course, the probabilities
must sum to 1. The set, C, is subscripted with time, so we are measuring the
probability that a configuration is instantiated at some particular time in the
future. In the notation, a lower case 'c' indicates one particular configuration and
an upper case 'C indicates a probability distribution over a set of configurations.

Expected Utility = EU(c) =EU(CT) = ^P(c)xU(c)
ceCT

The above computation assumes that negative (natural and adversary) events
can occur at any time during the time interval, but that helpful (administrative)
events take place only at interval boundaries. In other words, it is impossible to
fix a problem during an interval. This is realistic, since administrative actions
take some time to complete, whereas natural and adversarial actions, even if they
take time, are generally not noticed until their effect on the configuration is felt.

Because there can be more than one base utility function (e.g., Uwork(c)), there
will be more than one expected utility function (e.g., EUwork(c)).

Net Utility: Expected utility allows us to compute the benefit that can be
expected to be obtained from a configuration even after considering the near term
negative events that can cause the configuration to degrade. However, we now
need another kind of utility measure to allow us to consider longer term changes
to the system and to incorporate the ability to perform beneficial administrative
transformations. We call this net utility, NU(c). Net utility measures the fact that
the long term desirability of a configuration depends upon the services that are
currently running and the future configurations that can be reached. Net utility is
thus a sum of future expected utilities. In general, not all time periods are of equal
importance; as noted previously, the near term behavior of a system is usually
valued more highly than behavior far into the future. To handle this, we introduce
a discount function, D(T), which maps from time to an appropriate weighting
factor. The discount function is related to net present value in finance.

The following equation calculates the Net Utility, NU(c), of a configuration
based on the discount function and Expected Utility, EU(C), defined above.

Net Utility = NU(c) = ^D(t)xEU(Ct)
t>now

In natural language, the equation reads "the net utility of a configuration, c, is
the sum of the expected utility of the potential configurations at each time step
into the future discounted by the appropriate factor."

Both NU(c) and D(t) are specialized to the particular kind of base utility
function; e.g., NUwork(c).

The use of a discount factor has an additional benefit, since it allows us to
discount far future states for computational as well as policy reasons. This has a
practical advantage, since as noted previously, when one projects the
configuration space further into the future, the computations rapidly become more
expensive (due to state explosion) and the results rapidly become less precise (due
to imprecise estimates of event probabilities). The benevolent myopia introduced
by the discount factor allows us to ignore incomputable or dubious future states.

130

Appendix A-7

Alternative Utility Metrics: The meaning and power of the utility functions
defined above vary greatly depending on the precise definition of the base utility
function U(c). As noted above, the base utility function measures what is valued
most highly. We now describe two possible metrics.

The first survivability metric we developed, Utility of Value, was based on a
measure for aggregate performance. This work developed from a market based,
distributed resource allocation prototype. The goal of the market was to
maximize the value of all the services provided by the system. End users or
administrators would assign values to services. The resources, both hardware and
software, would compete to offer the best service at the lowest cost. The
resources' goal was to accumulate profits which would be gathered by the owners
of the resources and allocated to end users and administrators closing the loop.

Utility of Value is sufficient to solve the problem presented in the example at
the beginning of the paper. If users value a service highly, it will replicate itself to
assure that it is highly available. If resources are removed from the system, the
prices will rise and only the more valued services will obtain resources. Likewise
if resources are added, prices will fall and lower priority services will run. It
implements a simple microeconomic model that tends toward Pareto Optimality, a
local optimality criterion.

If the Net Utility of Value is maximized, then future performance of the system
will be maximized. There are many possible definitions of survivability, but a
relatively straightforward one is that the system continues to offer good
performance into the future. Value ranges over the integers depending on how
well the system is performing. More value is always better and less is always
worse. .

Our second metric, Utility of Operation, is based on a binary measure
depending on whether the system meets some minimal level of operation over a
given interval. This gives rise to a very different notion of survivability. Using
this measure, EU(C) is itself a probability: the probability that the system is
operational. Maximizing the Net Utility of Operation minimizes the possibility of
some catastrophic failure in the future, possibly at the cost of optimal average case
performance. This is arguably a better survivability metric than the Net Utility of
Value since the purpose of survivability is to avoid catastrophic failures. The two
could'be used in conjunction so that after a minimal level of service is guaranteed,
performance is optimized for the normal case.

Note that both Utility of Value and Utility of Operation differ significantly
from resource utilization in that they measure the perceived benefit of the system,
not how hard the system is working.

4. Examples

We now present four examples to illustrate how Utility of Value and Utility of
Operation are computed and the differences between them.

Example 1- The example with which we began the paper is a simple
illustration of Utility of Value. Returning to the example above, three
configurations are illustrated. We will quickly review the example with a

131

Appendix A-7

condensed notation. There are two services, A and B, and six hosts, 1-6. In the
initial configuration, Cl, each service has three replicas: Cl = A{1, 2, 3}; B{4, 5,
6}. After the failure, B loses two replicas, C2 = A{1, 2, 3}; B{4}. The third
configuration, C3, is the result of a possibly automatic administrative action
which trades a second backup from A to provide a single backup for B, C3 = A{ 1,
2}; B{4, 3}. This last transition is voluntary. The administrator or survivability
service would take what ever action seemed best.

The system is very simple and in this analysis we will look only one time step
into the future and consider two possible transitions, failure and startup. Each
service, A and B, is given a theoretical value of 1000 and requires an entire host
for a primary or a backup. This value is only reached if the service runs without
error through the period. There is a 10% probability of failure of each host during
a period, so the probability of success of a service with n replicas is 1-0.1".
RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)
AB 2000 .9980 1996 .8991 1798 .9801 1960

AB 1000 .0009 9 .0999 100 .0099 10

AB 1000 .0009 9 .0009 1 .0099 10

AB 0 .0000 0 .0001 0 .0001 0
1998 1899 1980

This table calculates the expected utility for each configuration in the example.
The first column indicates the state of the system. A bar over the service label
indicates the service is not operational at the end of the period. For example,
AB indicates that A is running but B has failed. The second column is the value of
the configuration. Here the aggregation function is simple addition, so if both A
and B are operational the value of the configuration is 2000. The third and forth
columns show the calculation of the expected utility of Cl, EU(C1), which is the
total shown on the last row of the table. The fifth and sixth carry out the
calculation for C2 as the seventh and eighth do for C3.

In Cl everything is running fine. Out of a possible value of 2000 the expected
utility is 1998, almost perfect. After the failures, the expected utility drops to
1899 because of the uncertainty that B will complete. C3 reflects the
administrative action of taking a replica from A and giving it to B. This increases
the expected utility to 1980, a dramatic improvement considering that no
resources were added.

Example 2: The next example calculates the binary Utility of Operation using
the same probabilities and configurations. The difference is in the utility of each
configuration. Since both A and B are required services, each is given a value of
1. The aggregation function is a logical AND, so only the configuration with both
operational is given a value of 1; all others are 0.
RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)
AB
AB
AB
AB

1
0

0

0

.9980

.0009

.0009

.0000

.9980
0

0

 0_

.9980

.8991

.0999

.0009

.0001

.8991
0

0

 0_

.8991

.9801

.0099

.0099

.0001

.9801
0
0

 0_
.9801

The Utilities are calculated as before. When calculating the expected Utility of
Operation the result is no longer binary. It ranges from 0 to 1 and is the

132

Appendix A-7

probability that the configuration will maintain a minimal level of operation
through the period. In Cl everything is running properly and the expected Utility
of Operation is 0.998, nearly perfect. After the failures, the expected utility drops
to 8991, again largely due to the risk that B will not complete. Again, the C3
reflects the administrative action of shutting down an A replica and giving it to B
which significantly improves expected utility.

Example 3- So far, the two service utility metrics produce the same desired
configurations. However, if multiple levels of QoS are introduced, it becomes
apparent that the two metrics differ substantially. This next example introduces
QoS The service A now has two levels of operation, high and low. The high
level offers a value of 2000 and requires 3 hosts to run. The low level is required
for a minimal level of operation and offers a value of 1000 but requires only 1
host to run. If the high level of service cannot be maintained, it automatically
drops to the low level of service. In the example A starts out at the high level of
QoS If A loses a host, it drops to the low level of QoS with one replica. The
probability that A completes the period at the high level is the probability that all
three hosts complete. The probability that A completes the period at the low level
is the probability that any single host completes minus the probability that A
completes at the high level. There are now 6 possible outcomes. B is still worth
1000, so if A completes at the high level along with B the value is 3000.

RC Value P(C1) E(C1)

AhB 3000 .7283 2185

A[B 2000 .2697 539

AB 1000 .0010 1

AhB 2000 .0007 14

A,B 1000 .0003 0

A~B 0 .0000 0

P(C2) E(C2) P(C3) E(C3)

.6561 1968 .0000 0

.2430 486 .9801 1960

.0729 73 .0099 10

.0270 54 .0000 0

.0009 1 .0099 10

.0001 0 .0001 0

2739 2582 1980

In the initial configuration all hosts are operational and the expected Utility of
Value is nearly optimal at 2739. After the failures, the expected value drops by
about 150 reflecting B's instability. C3 evaluates the administrative action of
removing a host from A to increase B's stability. In this case, the action does not
appear to be desirable and would not be taken. The reason is that removing a host
from A would cause it to drop from a high level of QoS to a low level of QoS at a
cost of nearly 1000.
RC Value P(C1) E(C1) ^(C2)_ E(C2) g(C3)_ E(C3)

\B 1

A,B 1

AB 0

AhB 0

AtB 0

TR 0

.7283

.2697

.0010

.0007

.0003

.0000

.7283

.2697

0

0

0

 0_

.9980

.6561

.2430

.0729

.0270

.0009

.0001

.6561 .0000 0

.2430 .9801 .9801

0 .0099 0

0 .0000 0

0 .0099 0

0 .0001 0

.8991 .9801

133

Appendix A-7

Example 4: The goal of the Utility of Value metric is to maximize perceived
performance and maintaining A at a high level of QoS is consistent with this goal.
However, the survivability of the system is sacrificed by this choice as the next
example using Utility of Operation shows.

In the initial state all hosts are operational and A is operating at the high level.
After the failures, B is reduced to one replica and the expected Utility of
Operation drops to .8991. A is still operating at the high level, but this is not
reflected in the binary operational metric. Step 3 reflects the administrative action
of taking a host from A. This causes A to drop from the high level to the low
level and increases the stability of B. As a result the expected operational utility
increases to .9801.

This example illustrates the difference between the integer Utility of Value and
the binary Utility of Operation. Utility of Value optimizes for performance and
Utility of Operation optimizes for stability. Which objective is preferable depends
on the situation. We would actually like to achieve both with some sort of hybrid
measure. For example, if two configurations are within an epsilon of expected
operational utility, then choose the configuration with the highest value. The size
of the epsilon would be controlled by an administrator and could vary over time.
For example in peace time, performance is preferable; however, before an
engagement the value could be tightened down to reflect an increased need for
stability.

5. Conclusions

We have presented a simple computational system model over which
survivability metrics can be computed, defined a series of metrics based on utility
theory to measure the immediate and long-term desirability of system
configurations, and presented two specific objective functions that value different
system properties (work and resilience). These were illustrated by examples. We
identified several extensions that should be investigated in the future to provide
greater fidelity between the models and reality.

6. References

1. "Survivability in Object Services Architectures - 1998 Annual Report",
David Wells, Object Services and Consulting, Inc.,
http://www.objs.com/Survivability.htm, 1998.

2. "DARPA/TTO Information Survivability Website", Defense Advanced
Research Projects Agency - Information Technology Office,
http://www.darpa.mil/ito/research/is, 1998.

3. "Lazy Replication: Exploiting the Semantics of Distributed Services," R.
Ladin, B. Liskov, L. Shrira, Proceedings of the Ninth Annual ACM
Symposium on Principals of Distributed Computing, Quebec, 1990.

4. "Game Theory in the Social Sciences: Concepts and Solutions," Martin
Shubik, MTT Press, Cambridge Massachusetts, 1982.

134

Appendix A-8

Survivability in Obiect Services Architectures

Estimating Service Failure
David L. Wells

David E. Langworthy

Obiect Services and Consulting, Inc.

In the process of creating and maintaining survivable configurations, the Survivability Service needs
to predict the likelihood that, within some time interval, a service will be damaged to an extent that it
cannot provide the required level of service. This paper discusses a basic model of how services are
provided by resources, how threats against those services are modeled, and how the probability or
service failure is computed from the threat model.

1. Introduction
While creating and maintaining survivable configurations, the Survivability Service needs to predict
the likelihood that, within some time interval, a service will be damaged to an extent that it cannot
provide the required level of service.

This report presents a general model of how services are provided by resources, how threats against
those services are modeled, and how the probability of service failure is computed from the threat
model. The general model allows substantial flexibility in the details of how resources and threats are
modeled; this constitutes and important parameterization of the Survivability Service.

In order for the Survivability Service to function, at least one specialization of the general model must
be defined; the model specialization currently used by the Survivability Service is presented. Of
course in order for the Survivability Service to actually function, there must be a concrete realization
describing the properties of the particular software system being monitored, specified as defined by
the model specialization being used. Such a concrete realization is outside the scope of this report.

In general, the failure computations can be computationally intensive. We present a number of
optimizations to reduce the effort required to estimate failure probabilities.

The report conclude with issues related to the general model and our particular specialization.

2. General Model
Estimation of service failure requires a model of resources available within the system, a model of
threats to those resources, and calculating techniques to apply the threats to the resources. This

135

section defines the most generalized form of each of these that must be adhered to by any
specialization.

The generalized model must be able to express:

• independent threats to individual resources,

• attacks that affect multiple resources,

• multiple attacks against the same resource,

• correlated attacks on groups of resources,

• variable probabilities of resources being affected by attacks,

• ongoing attacks,

• variable amounts of damage by attacks,

• simple resources that do not depend on other resources,

• complex resources that depend on other resources, and

• multiple levels of resource quality of service.

Not all of these need be supported by a particular specialization.

2.1. General Resource Model

Resources. Every service is provided by a resource. A resource may be either a base resource or a
complex resource. Complex resources use the services provided by other (base or complex)
resources; base resources do not. A base resource is affected only by its own failure, while complex
resources are affected by the failure of resources upon which they depend. It is typical that services
specify only the services upon which they directly rely. However, nested dependencies exist
whenever a resource relies upon the services of a complex resource which will itself have
dependencies. In this case, a failure of a lower level resource may cause the failure of a higher level
service. We define the resource closure of a service in the obvious way. The resource closure may be
represented as a directed graph of resource dependencies.

Any cut through the resource closure graph of a service represents a set of resources, either base or
complex, on which the service relies. Such a set is called a resource group of the service.

A resource group R is denoted as:

R={ri, ..,rn}
where:

ri is an individual resource (base or complex) in R

136

There are potentially many (equivalent) resource groups for a given service, depending on where the
cut is made. Only one of these contains exclusively base resources.

Consider a simple planning service example. The planning service directly relies upon five
resources: its own code, the computer the planning service currently runs on, a map service, a weather
service, a network connection to the map service, and a network connection to the weather service.
The map and weather services are themselves complex services, while the planning service s code, its
computer and the network connections can be modeled as base resources. The map and weather
services each rely on a host and some software. The planning service does not directly care (or even
know) about the resources used by the map and weather services as long as those Services continue to
perform However, since a map host failure will cause the map service to fail, which will m turn
cause the planning service to fail, these base resources are included in the resource closure of
planning service and consequently are of concern to the Survivability Service.

Resource States: Damage causes the state of a resource to change (unless it was already failed) A
specialization of the resource model must define the potential states of each resource. More states
increases the realism of the model at the cost of increased storage and computational complexity.
Natural choices for resource states are:

• {Fail, Run} if resources are considered to be either functioning perfectly or not at all (or at
least insufficiently well to be useful),

. percentage degradations (e.g., lose 20% of capacity) to describe diminished capability to
provide QoS for resources whose level of service is easily measured (e.g., CPU cycles), or

• QoS states (e.g., High, Low, Failed) for services whose QoS level is not easily measured
quantitatively, or where there is a desire to reduce the number of QoS levels to a more
manageable number as is done in the QuO system.

Just as individual resources will be in some state, so will resource groups. The state space of a
resource group is the cross product of the potential states of the individual resources in the resource
group A state of a resource group is one particular element in this state space. The state space of a
resource group grows rapidly with group size and number of states for the individual resources. For
this reason, it is important that there be ways to prune portions of the space as irrelevant for common
cases. These are discussed below.

The state of a resource group is important because we generally care less about the state of individual
resources than we do about the state of configurations of resources. There are three reasons for this:

• providing a complex service requires many resources of different kinds,

• not all resources in a resource group are necessarily required, and

. there is often substantial freedom in the choice of configuration; if one doesn't work, another

might.

A resource group will be in exactly one state at any given time. Since a service is itself a resource, it

137

will be in some state as well. There is a mapping from resource group states to service states that
indicates the state(s) possible for the service given the states of the resources. Note that this is not
strictly a function, since a service might choose to operate in a lower state than is possible given its
resources (for example because its client does not currently demand a higher level of service). In
general, the service will be attempting to operate in some state, so it will be possible to tell, from the
state of its resource group, whether it will be successful.

Probability Distribution of State Spaces: It is common to need to estimate the probability that a
service will be able to function in a particular state given its current (or planned future) resource
group. This means that it is useful to describe the potential of a resource group for being in any of its
possible states. The probability distribution of the state space of a resource group is an assignment of
a probability to each potential state. Naturally, the probabilities must be in [0.0 ..1.0] and must sum
to 1.0.

2.2. General Threat Model

Threats: All resources are subject to threats. A threat is the potential for damage to some collection
of resources. These resources are said to be vulnerable to that threat and are called that threat's
vulnerable resource group. Vulnerable resources can be damaged if the threat manifests itself as an
attack. An attack can cause damage to zero or more of the vulnerable resources. Sometimes this
damage is correlated (resources are likely to be affected together in the same way) and sometimes it is
not. When a resource is damaged, it moves to one of its lower potential states depending on the nature
of the threat. Damage to resources changes the state of the resource group.

A threat T is defined as:

T = (R,D(R))
where:

• R is the vulnerable resource group

• D(R) is a damage effect matrix specifying the probability of transitioning, within some
time interval, from any resource group state to any other resource group state because
of damage from an attack

Note that D(R) defines the probabilities of transition within some time interval. D(R) can be huge, so
for pragmatic purposes, it is important to define a threat model in which relevant parts of D(R) can be
computed from a smaller specification. This is discussed below.

Restricting Threats to Resource Groups: Ultimately, we care about the effect of threats on services'
resource groups; i.e., being able to compute the probability distribution of the state space for arbitrary
resource groups given known threats. It will frequently be the case that the vulnerable resource group
for a threat contains resources that are not part of the resource group for a service under investigation
and vice versa. While an attack based on the threat may cause resources outside the service resource
group to fail, we will generally be unconcerned with this. For this reason, it is useful to be able to
restrict a threat to only those elements in the service resource group. A restricted threat is one whose
definition has been modified by subsetting the vulnerable resource group and making modifications

138

to D(R) to limit transitions to the subset with the appropriate transition probabilities.

If a resource group V is vulnerable to a threat T, then any subset of V is also vulnerable to T. The
implication of this is that the intersection of the vulnerable resource group of a threat and the: service
resource group of a service is also a vulnerable resource group for the threat. This means that for any
threat T with resource group RT and service S with resource group RT, it is possible to compute the
definition of a restricted threat T' whose vulnerable resource set is this intersection and whose
stochastic state transition matrix applies only to the intersection. Resources in the service resource
group that are not vulnerable to the threat cannot be affected, but must be considered when defining

the damage matrix.

A restriction T' of a threat T to a service S is defined as:

• T' = (union(intersect(RT, Rs), Rs), D(union(intersect(RT, Rs), Rs))

The computation of D(union(intersect(RT, Rs), Rs) is dependent upon the form of D(RT) andD(Rs).
The way to compute this for our specialization of the threat model is discussed below .

TW«t. tn Tomplex Resources: In principle, it would be possible to define threats that applied to
entire services. However, this is unsatisfactory for a variety of reasons:

• It is far harder to make realistic estimates of the vulnerability of complex things (services)
than simple things (base resources). Threats to base resources are generally simpler and more
uniform because of the uniformity of base resources. For example, the threat of hardware
failure is the same for all identical SPARC stations and all copies of the same code will have
the same programming errors. As a result, all functionally similar resources are subject to the
same threats. Complex resources, on the other hand, are constructed from simpler resources
and they may be constructed in a variety of ways. Two functionally equivalent map servers
may utilize very different kinds of base resources and thus be subject the quite different

threats.

• Many kinds of threats to base resources are already known. For example, analyses of
hardware failure rates are common, insurance companies make their living by accurately
estimating the likelihood of physical disasters such as fires and floods, and the SEI and others
are working on ways to measure software quality. The same is not true for complex services

that rely on many resources.

• The number of individual services for which threats would have to be individually specified is

daunting,

• Modeling threats against directly against complex services ignores the fact that services can
be reconfigured to use different resources.

. Modeling threats against directly against complex services ignores correlation between
failures of different services. This is particularly critical when considering replicas, where
correlated failures may make a system far less robust than it might appear on the surface, or
when two services rely on the use of common base resources.

139

For this reason, we choose to directly model threats against base resources and aggregate them to
determine the threats against more complex resources. Threats to base resources are identified and
defined by a human and stored in a database accessible to the Survivability Service. Threats to
complex resources are computed from these. Note that if a service is a black box, it can be modeled
as a base resource, but then the Survivability Service will have little latitude in helping it survive.

2.3. Computing the Effect of Threats on Services

2.3.1 Overview of the Calculations

Computing the effect of threats on a service proceeds as follows:

1. The resources used by the service are determined. This will typically require recursively
following sequences of single level resource dependencies through intermediate services
down to base resources. Base resources must be reached, since it is only for base resources
that threats are stored in the concrete threat model. The resource dependencies may be
represented as either a directed graph whose intermediate nodes are intermediate level
services, or flattened into a state space of base resources.

2. The states of the resource group that will allow the service to function as desired are
determined. This information is used to derive a function that maps the probability
distribution of the resource group's state space to a probability that the service continues to
perform.

3. The damage effect matrices of the threats (as restricted to the resource group) are applied to
the resource group to determine the probability distribution of the resource group's state space.

4. The probability of the service being able to perform as desired is computed from the
probability distribution of the service resource group's state space using the function derived
in step #2.

2.3.2. Computing with a Flattened State Space

The most general form of the computation flattens the resource group to base resources. For even
moderate sized resource groups, this computation is intractable, so a number of optimizations are
used to manage the computational complexity. However, because it represents the most conceptually
clear form of the calculation, it is presented first, followed by the various optimizations.

The resource group is represented by a state space formed as the cross product of all possible states of
all base resources in the resource closure. The resource dependency graph can be used to determine
which states will allow the service to perform and which will not. States of a resource group that
allow a service to function can be framed as a Boolean expression over the resources in the resource
group. For each complex resource in the expression, replace it by the Boolean expression describing
states of its resource group needed to function. Repeat this until all complex resources are eliminated.
The resultant expression can be simplified if desired.

Consider the example below.

140

In the example we have a high level resource T. T depends on a service A which runs on host HI. In
addition, T depends on a replica group B. B depends on three replicas Bl, B2, and B3. In the
diagram the bar across the links indicates an "or" dependency rather than the standard "and
dependency. Bl, B2, and B3 depend on HI, H2, and H3 respectively. Service A runs application
code A' and replicas Bl, B2, and B3 all run application code B'. The replicas of B are coordinated by
code C For simplicity, assume that a resource (host or code) either performs or fails.

T performs if A and B both perform. A performs if A' and HI both perform. B performs if C and
any of Bl, B2, or B3 perform. Bi performs if B'performs and Hi performs. Thus, a state in the
resource group state space will allow T to perform if it satisfies:

• (A' and HI) and (C and B' and (HI or H2 or H3))

Naturally, alternate forms of this expression are possible.

The probability distribution of the state space is computed iteratively by applying the damage
matrices of the restricted threats. At each iteration, we will have the probability distribution for the
state space given threats that have been considered so far. The initial state (actual or believed) is
determined directly from the monitors (sensors).

Once the probability distribution of the resource group state space has been computed, the probability
that the service will function is a simple matter of summing the probabilities of being in each of the
states that satisfy the function computed above.

2.3.3. Generic Optimizations

The procedure outlined above is computationally intensive and creates large closures. Fortunately, in
many configurations, it is possible to simplify this process substantially.

Optimizations of the following kinds are possible, depending on the particular model specialization
chosen:

• reducing the size of the resource group state spaces, which will in turn shrink the size of the
matrices for state space probability distributions and damage effects,

• specifying threats in such a way that it is possible to compute (rather than specify) the damage

141

effect matrices in most cases; to do this, we differentiate between threats to base resources and
threats to complex resources,

• pruning techniques to be able to coalesce equivalent states or to avoid computations altogether
when their effect is insignificant,

• recursive techniques to hide inherited resource dependencies when considering complex
services with many levels of dependencies to reduce state space explosion while not losing the
effect of threats against possibly shared lower level resources.

The optimizations mentioned above make use of properties of the kinds of configurations maintained
by the Survivability Service. Our survivable object abstraction (see Composition Model of OSA and
Evolution Model of OSA) places certain restrictions on the form of resource dependency graphs. At
any single level of abstraction, there are three basic resource dependency structures:

• all of a collection of potentially diverse resources are required,

• at least one of a collection of functionally equivalent replicas are required, and

• some quorum ql of functionally equivalent replicas are required.

These techniques are applicable to many specializations, but for clarity, we will explain them in the
context of our own specialization.

3. A Specialization of the General Model
The general resource model, threat model, and calculations presented above are very powerful. The
general model leaves free the choice of possible resource states and the algebra for the damage effect
matrix, since this degree of freedom is necessary in order to support different survivability and QoS
policies. A specialization must define these. Also to be defined is a concrete representation for
resources and threats.

While specializing the general model, it is desirable to keep in mind that the general model is
extremely space and computation intensive, so it is important that the specialization be amenable to
optimizations that make specification, storage, and computation tractable. This section presents such
a model. It satisfies most of the desired properties (reiterated below) provided by the general model
and is computationally much more efficient. Desired properties satisfied by the specialization are
denoted by a "*".

• independent threats to individual resources (*),

• attacks that affect multiple resources (*),

• multiple attacks against the same resource (*),

• correlated attacks on groups of resources (*),

• variable probabilities of resources being affected by attacks (*),

142

• ongoing attacks (*),

• variable amounts of damage by attacks,

• simple resources that do not depend on other resources (*),

• complex resources that depend on other resources (*), and

• multiple levels of resource quality of service.

3.1. Resource States and Damage Effects

Restricting the resource states that will be modeled is key to making the computation tractable, since
if there are m allowable states, a resource group with n elements will have m states If an attack can
cause any combination of resources to transition to any lower resource states, then for m states and n
resources, the damage effect matrix must contain (m*(m+l)/2)n entries. [Note: proof by induction on

m.]

We consider only two possible states for resources: {Failed, Running}. The state space of a resource
group is thus (F, R)*. This also means that the damage effects are limited to {Fail, NotFail}.

3.2. Threats to Base Resources

As noted above, there are several differences between threats to base resources and threats to complex
resources that cause us to only directly specify threats to base resources. These same differences
allow us to model threats to base resources in a simpler, more compact fashion than is required tor
threats to arbitrary (potentially complex) resources by the general model. In particular, there is a
much simpler, more compact way to specify the potential effect of a threat that eliminates the need to
specify a complete damage effect matrix for threats to base resources.

3.2.1 Threat Specifications

Recall that in the general model, a threat T is defined as:

T = (R,D(R))
where:

• R is the vulnerable resource group

• D(R) is a damage effect matrix specifying the probability of transitioning from any
resource group state to any other resource group state because of damage from an attack

As seen, D(R) can quickly become huge, so there is an incentive to create a more compact form.
Even with the only resource states being {Running, Failed} and the only transitions being {Fail
NotFail} the size of of the damage effect matrix for an n element resource group is 3 The matrix
can be further reduced in size by observing that Fail(X)=Failed and NotFail(X)=X. Thus, it is
sufficient to give the probabilities of failure for all possible combinations of resources in the group.
This is 2n entries (probabilities) for a resource group with n elements.

143

However, this is still large. We can do better by observing that a resource is only damaged if a threat
materializes as an attack and by then assuming that in the event of an attack, all base resources have
equal probability of failure. A specification of this type looks like:

Tstapte-base = (R, P(A), P(Fail(r)|A))
where:

• R is the vulnerable resource group

• P(A) is the probability of an attack materializing in the time period as the result of the
threat

• P(Fail(r)|A) is the probability that each resource in R fails if an attack occurs

From this, the stochastic state transition matrix can be computed easily (see below-).

This model is realistic for many kinds of threats. The following examples show how different
situations can be represented in this model of base threats.

Example #1 - Independent Failures: A and B are hosts in different mobile platforms, The threat is that
the platform (and hence the computer) will be destroyed; there is a 0.01 probability of that happening
during our interval. The platforms are independent, and equally likely to be destroyed.

Tdestroyed = ({A,B},1.0,0.01)

Example #2 - Attacks Against Multiple Resources: C and D are hosts that rely on the same power
supply. The threat is that the power supply fails; there is a 0.01 probability that is happens during our
interval. If this happens, both A and B will fail; if it does not happen, neither will fail as a result of
that threat.

Tpower=({C,D}, 0.01,1.0)

Example #3 - Correlated Attacks: E and F are programs that are susceptible to a viral attack. There is
a 0.04 probability that such an attack will be launched during our interval, and that if it is, there is a
0.25 probability that each of E and F crash.

Tvims = ({E,F}, 0.04, 0.25)

3.2.2. Computing the Damage Effect Matrix

The restriction of the damage effect matrix for a threat to a group of base resources is computed as
follows. Assume the restricted vulnerable set R has n members. In our model, failures are
independent if an attack occurs, so the number of failed resources, m, in the event of an attack is
binomially distributed; i.e., p(n, m)= P(Fail(r)|A)m * (l-P(Fail(r)|A))n'm. In addition, no resources fail
if no attack occurs. So:

• P(transition to a state with mO failed resources) = P(A) * P(Fail(r)|A)m * (l-P(Fail(r)|A))nm

• P(no failures) = (1 - P(A)) + (P(A)*(l-P(Fail(r)|A))n)

144

Resources outside the vulnerable resource group cannot be affected by the threat, so the probability of
transition to states in which they Fail is zero.

Example #4: Tvirus ({E, F, X}, 0.04, 0.25) applies to a service with resource group {E, F, Y}. The
restriction of TViruS is:

Tvirus'=({E,F,Y},0.04,

[(RRR, 0.9825)
(RRF, 0.0000)
(RFR, 0.0075)
(RFF, 0.0000)
(FRR, 0.0075)
(FRF, 0.0000)
(FFR, 0.0025)
(FFF, 0.0000)])

//
//
//
//
//
//

1 - 0.04 + 0.04*(l-0.25):

Y cannot fail
0.04 * 0.251 * (1-0.25)1

Y cannot fail
0.04 * 0.251 * (1-0.25)1

Y cannot fail
// 0.04 * 0.252 * (1-0.25)
// Y cannot fail

3.2.3. Expressiveness of the Specialization

Examples #1-3 represent, respectively, independent failures, attacks against multiple resources, and
correlated attacks. Consider the following table, which shows the probability that particular
configurations of AB, CD, and EF are functioning at the end of our interval. An R indicates the
resource is running, an F indicates it has failed.

AB P CD P EF P

RR
RF
FR
FF

0.9801
0.0099
0.0099
0.0001

RR
RF
FR
FF

0.9900
0.0000
0.0000
0.0100

RR
RF
FR
FF

0.9825
0.0075
0.0075
0.0025

Since we care about which subset(s) of the resource group are likely to end up in, this distinction
matters Since the important subsets are often either the entire resource group (i.e., [RR]) or those

with at least one surviving member (i.e., not [FF]), the need to consider correlation is clear. The case
where a resource is shared among the resource groups of multiple services is similar.

This specialization accurately captures two critical survivability notions (assuming that failure
probabilities are similar):

• when all resources in a resource group must survive, it is best to choose resources whose
failures are correlated, since this reduces the number of ways in which resources can be
compromised

• when only some (e.g., replicated) resources in a resource group must survive, it is best to
choose those whose threats have as little correlation as possible, since this prevents a small
number of attacks from affecting many resources.

Because this specialization divides a threat into a probability that an attack will occur and a
probability that a resource is affected if the attack occurs, it is possible to make use of recent history

145

to improve the use of the model. If some resource has been damaged by an attack and the attack is of
the sort that can last through multiple time intervals (as most can), then we know that an attack is in
progress and therefore P(A)=1. The result is that other resources subject to the threat are more likely
to be damaged than they would be if it were not known that the threat had manifested itself as an
active attack. This deals nicely with the "burning building problem". While it is generally a good
idea to not place critical resources such that they can be damaged by a single fire, it is essential to
avoid such configurations the fire is occurring right now. Of course, similar observations apply to
other kinds of threats as well, where we might want to avoid over reliance on one platform type to
avoid hacker attacks, but the need to do so becomes much more critical when such attacks are known
to be occurring.

3.3. Threats to Complex Resources

A complex resource (service) is threatened by the failure of lower level resources upon which it
relies. As such, it is threatened by the same threats as these lower level resources. The example
below illustrates the straightforward manner of computing how threats to complex resources are
determined based on threats to base resources. Optimizations are discussed in the next section.

Example #5 - Threats to Complex Resources. A service S requires at least one replica from the set
{Rl, R2 }. Dependencies of the replicas are:

Threats to these resources are:

Tdestroyed = ({A}, 1.0, 0.01)

Tpower = ({A, B}, 0.01, 1.0)

Tvirus = ({E, F}, 0.04, 0.25)

S performs if it satisfies:

S = Rl or R2 = (A and E) or (B and E and F) = E and (A or (B and F))

The only states for [ABEF] that satisfy this equation are:

[RRRR]
[RRRF]
[RFRR]
[RFRF]
[FRRR]

146

1

The damage effect matrices are shown below. Transitions not shown have P=0. N represents NotFail,
F represents Fail.

1 destroyed

transition 1 NNNN FNNN

probability 1 0.9900 0.0100

L power

transition NNNN FFNN

probability 0.9900 0.0100

A virus

transition NNNN NNNF NNFN NNFF

probability 0.9825 0.0075 0.0075 0.0025

Applying the threats to iteratively compute the probability distribution of the state space yields the
following table.

state
after

^destroyed

after
*■ power

after
^-virus

RRRR 0.990000 0.980100 0.9629483

RRRF - - 0.0073508

RRFR - - 0.0073508

RRFF - - 0.0024503

RFRR - - -

RFRF - -

RFFR - -

RFFF - - -

FRRR 0.010000 0.009900 0.0097268

147

FRRF - - 0.0000743

FRFR - - 0.0000743

FRFF - - 0.0000248

FFRR - 0.0100000 0.0098250

FFRF - - 0.0000750

FFFR - - 0.0000750

FFFF - - 0.0000250

Summing the probabilities of ending in the states that satisfy S, ([RRRR], [RRRF], [RFRR], [RFRF],
and [FRRR]) gives a probability of continuing to ran of 0.9800258. This means that there is
approximately a 2% probability of failure during the next time interval.

4. Optimizations
The calculations shown above are expensive because of the number of the number of resource group
states that must be calculated. This section presents several techniques to reduce this calculation
without sacrificing accuracy. At some point in the future, we hope to also consider approximate
techniques that will substantially reduce the amount of computation by allowing the introduction of a
bounded amount of error.

4.1. Coalescing Irrelevant States

In example #5. only 5 of the possible 16 states of the resource group allowed the service to function.
Because the effect of attacks is monotonically non-increasing (i.e., things never get better as the result
of a threatened attack), once a failure state has been reached, it does not matter what else happens to
the system since it will still be in one of the failure states (although not necessarily the same one).
We can capitalize on this observation by coalescing all failure states into a single synthetic state
[OTHER]. It then is necessary to only keep track of the individual states that allow continued
operation plus the one state that does not. In example #5, this is 6 states: [RRRR], [RRRF], [RFRR],
[RFRF], [FRRR], and [OTHER]. The calculation for this is shown below.

148

Example #6: Coalescing Irrelevant States

state after
Tdes troyed

after
■!• power

after
■1-virus

RRRR 0.9900 0.9801 0.96294825

RRRF - - 0.00735075

RFRR - - -

RFRF - - -

FRRR 0.0100 0.0099 0.00972675

OTHER - 0.0100 0.01997425

The computation is equivalent to that in example #5, but much faster. The gain comes from the fact
that fewer states need be considered (6 as opposed to 16). Note also that the failure probability is
simply the probability of the system ending in [OTHER].

An interesting special case of this is when a service succeeds if and only if all resources in its
resource group succeed. In this case, the computation is very simple. If all resources in a resource
group are required, then the only state of the resource group that that allows the service to perform is
[Run, Run,... Run]. This can be reached if and only if the damage effect of every threat is [NotFail,
NotFail, ...NotFail]. Since all threats are assumed to be independent, this is simply n i (P(Di -
[NotFail, NotFail,..., NotFail])).

4.2. Bottom-Up Computation of Intermediate States

At any single level of services, there are typically a small number of direct resource dependencies; the
troublesome state explosion occurs because of the recursive nature of the resource dependencies.
Thus if it is possible to perform a bottom-up computation of the probability of intermediate resources
failing, no single computation will be too large. However, as the following example illustrates, a
naive bottom-up approach can yield dramatically incorrect results.

F.xamnle #7 - Incorrect. Bottom-uP Computation of Intermediate States: Consider the resource
dependencies and threats from example #5. A bottom-up approach would compute the probability of
failure of Rl from A and E, of R2 from B, E, and F, and then S from Rl and R2.

Rl and R2 run only if all of their resources are also running, so it is only necessary to compute that
each threat causes no failures. We know that for a given threat:

P(no failures) = (1 - P(A)) + (P(A)*(l-P(Fail(r)|A))n)

where n is the number of resources to which the threat applies

149

Thus:

P([A, E] = [Run, Run]) due to:

"■destroyed = (i.
= (i
= (i

00 - 1.00)
00 - 0.01)
00 - 0.04)

+
+
+

.00M1.00-0.
.01M1.00-1

01)1)
• 00)1)

(0.04*(1.00-0.25)1)

P([B, E, F] = [Run, Run, Run]) due to:

•■destroyed (i.
(i
(i

oo
,00
.00

1.00)
0.01)
0.04)

(1.00*
(0.01*
(0.04*

00-0.01)°)
.00-1.00)1)
.00-0.25)2)

0.9900
0.9900
0.9900

1.0000
0.9900
0.9825

So:

P([R1] = [Run]) = 0.9900 * 0.9900 * 0.9900 = 0.970299
P([R2] = [Run]) = 1.0000 * 0.9900 * 0.9825 = 0.972675

P([R1] = [Fail]) = 1 - 0.970299 = 0.029701
P([R2] = [Fail]) = 1 - 0.972675 = 0.027325

Thus:

P([S] = [Fail]) = P([Rl]=[Fail]) * P([R2]=[Fail]) = 0.029701 * 0.027325 = 0.000811579825

This method of calculation estimates approximately a 0.08% probability that S will fail in the next
time interval. It is a quick computation; however, it is incorrect, as can be seen by comparing it with
the correct results in example #5, which indicated a 2% probability of failure. The source of this
discrepancy lies in two correlations between the resources used by Rl and R2. The most obvious
correlation is that resource E is used by both replicas, so a single failure will cause both to fail.
Somewhat less obvious is the fact that attacks against A and B are highly correlated (Tpower is
completely and Tvirusis partially correlated). The result is that even though these resources are not
reused, they share common vulnerabilities; in this case to loss of power or viral attack.

Intermediate results can be safely computed only if all resource reuse and correlated threats are
handled properly. One way to do this is to compute the state space of all base resources and from
there iteratively, compute the state space of intermediate resources. This is shown below.

Example #8: Bottom-Up Computation of Intermediate States. Again, going back to example #5, we
would compute the state space distributions of [ABEF], then [R1,R2], then S. These are:

State Space Distribution of [ABEF]

state

after
■^ destroyed

after 1 after
T I T . ■■■power j J- virus

150

1

RRRR 0.990000 0.980100 0.9629483

RRRF - - 0.0073508

RRFR - - 0.0073508

RRFF - - 0.0024503

RFRR - - -

RFRF - - -

RFFR - -

RFFF - -

FRRR 0.010000 0.009900 0.0097268

FRRF - - 0.0000743

FRFR - - 0.0000743

FRFF - - 0.0000248

FFRR - 0.0100000 0.0098250

FFRF - 0.0000750

FFFR - - 0.0000750

FFFF
 ~ _...

- 0.0000250

State Space Distribution of [Rl, R2]

state all threats resource states

RR 0.9629483 [RRRR]

RF 0.0073508 [RRRF], [RFRR], [RFRF]

FR 0.0097268 [FRRR]

FF 0.0199742 all others

S runs ur

Correct t

lie

)Ot

ss the state

tom-up con

of[Rl

lputati

, R2] is [I

on has lit

T].

tie advantage excep t in tw(5 cases:

151

• there are many top level services whose failure probability can be computed from the same
intermediate state distributions, and

• the number of base resources can be dramatically reduced by taking advantage of the shape of
the resource dependency graph.

Computing for multiple onelevel services may prove useful in the future, but it imposes additional
complexity on the functioning of the market. At present, our market does not do this.

Shrinking the size of the resource group state space using the graph structure of the resource
dependencies is discussed next.

4.3. Collapsing the State Space

The failure probability for a high level service depends on the threats against that service and also all
of its dependencies. In the absence of replica groups, the probability that a resource keeps running is
the probability that it and the logical "and" of all its dependencies keep running. Replica groups act
as "or" or "threshold" branches. The subgraph of dependencies for a particular resource implies a
logical expression over the state space of resources. The general threat calculation computes the
probability that each state will be reached. The logical expression can be evaluated over each
potential state and the probabilities for all state which are false (down) are summed to yield the
probability that the resource fails.

The problem with this is that the calculation of the state probabilities is exponential in the total
number of resources. If the resource under consideration depends on a large number of resources the
computation will quickly become intractable. Our goal is to find a less computationally intensive
calculation of the failure probabilities. One possibility is to develop an approximation with an upper
and lower bound. This approach has potential, but we haven't had too much success with it yet. We
have had success in dramatically reducing the number of states which must be considered which
yields an exact result.

Operations on the Resource Dependency Graph

©

Consider the figure above. T and B are resources and T depends on B. T continues to run only if B
continues to run, so the probabilities that each keep running do not need to be considered separately.
For the purpose of the threat calculation we can collapse T and B into one node T,B. The threats
against T and B are merged with an adjustment described later.

152

If there were a dependency on B from somewhere else in the subgraph (as in the figure above), the
states of B and T must be considered independently. In merging T and B information about the
individual states is lost. This information is needed to calculate the probability of failure for whatever
is above B and its correlation to T.

If this transformation is applied in a top down manner, there will be no such outside dependency
unless there are replica groups. Therefore, an entire resource dependency graph can be collapsed into
a single node as shown in the diagram below.

©
In this diagram C has two incoming dependencies an therefore cannot be merged with either A or B.
However, this is not necessary. The transformation is applied in a top down, breadth first manner.
Once two nodes are collapsed, the search begins again from the root node. In the first search, A is
identified as a viable merger candidate and merged with T. Then the search begins again from T,A.
B is identified as a merger candidate and merged to form T,A,B. At this point the dual dependencies
converging on C are merged. C is now a merger candidate and is identified on the next pass. It is
merged to form T,A,B,C.

Prior to the transformation, the calculation of T's failure probability would have required 4 states.
Since each state can be either up or down this results 24 = 16 points in the state space to consider.
After the transformation there is only one state and two points in the state space.

Adjusting Threat Descriptions

The threat model models threats against multiple resources, for example power outage or a viral
attack. These threats need to be adjusted if their members are merged.

Consider the diagram above. T depends on A and B. A and B are vulnerable to the same threat (the
shaded area). When A is merged in to form T,A that threat then applies to B and T,A There is no
problem with this. There is a problem when B is merged to form T,A,B. The probability that the
group is attacked remains the same, but the individual probability of failure can change. Consider the
case that the threat group is something like vulnerability to the same virus. There is some probability
that the system is exposed to the virus, say 0.2. Given that there is viral contamination, there is some
probability that either A or B will fail, say 0.1. Merging A and B into T does not change the
probability of viral contamination, but the probability T,A,B fails conditioned on the contamination is

153

not 0.1. If the virus infects either A or B, T,A,B will fail. The virus now has two chances against the
one node. The correct probability of failure given contamination is P(A or B) = P(A) + P(B) - P(A
and B) = 0.1 + 0.1 - 0.01 = 0.19.

Replica Groups

Replica groups impose complexity because their states do need to be considered independently and
cannot be collapsed in general. There is some possibility that by exploiting symmetry or
approximation this limitation can avoided in common special cases, but we do not have a result in
this area yet. Although, we have run down some promising looking box canyons.

Putting It Together

An example demonstrating a realistic level of complexity is provided.

In the example we have a high level resource T. T depends on a service A which runs on host HI. In
addition, T depends on a replica group B. B depends on three replicas Bl, B2, and B3. In the
diagram the bar across the links indicates an "or" dependency rather than the standard "and"
dependency. Bl, B2, and B3 depend on HI, H2, and H3 respectively. Applying the transformation
once identifies A and merges it to form T,A.

The second application identifies B. Note that in our model we explicitly represent the threat against
a coordinator of a replica group as distinct from those of the replicas. B is merged to form T,A,B
which has 4 dependencies, A's dependency on HI and B's dependencies on Bl, B2, and B3.

The third and forth applications identify H2 and H3 and merge them into B2 and B3. This is the full
degree of compression that we can accomplish with the simple transformation. It has compressed a
graph with 9 nodes or 512 points in the state space to 5 with only 32 points in the state space.

154

5. Issues
5.1. Waste of Resources During Allocation

Self-adaptive systems can waste resources in at least the following ways.

. Dedicating the wrong amount of resources to meeting application needs. The obvious
example of this would be using too many resources for some purpose. This "over
engineering" assigns resources to tasks for which they are not really needed to make sure
that the task gets done. This is not a problem if resources are plentiful, but can cause other
tasks to be starved when resources dwindle. A less obvious example is if the assignment of
too few resources to a task causes the task to fail to be accomplished, thereby wasting the
resources that were futilely committed.

. Excessive optimization. Regardless of the objective function being optimized by the
adaptation mechanisms, globally optimal configurations will not be achievable in practice.
This means that it will usually appear that a slight "tweaking" of the system could result in a
better configuration. However, this is misleading, since the model serving as the basis for
optimization contains many errors and uncertainties as outlined above. This uncertainty
means that once a certain level of "goodness" has been reached, it will be impossible to el
whether a given adaptation makes the situation better or worse. Bounding the uncertainty tells
when further adaptation is pointless.

• Optimizing the wrong thing. It will be impossible to make adaptation decisions about all
parts of the system simultaneously because it would be very expensive. An understanding of
errors can help determine which parts of the system might be furthest from their desired state
and thus are most deserving of attention.

• Fast vs. ideal decisions. Given the model uncertainty, is it better to make many quick,
possibly quite sub-optimal adaptation decisions, or fewer, better decisions more slowly. Since
decision quality will be bounded by model uncertainty, should the resources invested in
reaching a decision be tunable to tailor the sophistication of the decision making to the model

quality?

An understanding of errors and uncertainty (below) is necessary (but not sufficient) to avoid these

kinds of mistakes.

5.2. Errors and Uncertainty
The quality of the adaptation decisions that can be made is clearly constrained by the fidelity with
which the model reflects the real world. Model infidelities can lead to invalid configurations that do
not function properly. They can also cause the decision process to fail to find legitimate adaptations
or to perform functionally valid but sub-optimal adaptations. Modeling errors and uncertainty can
arise from faulty specifications, sensing errors, errors in assumptions about future behavior, and data

management inconsistencies.

155

To date, little work has been done to determine the effect of modeling and sensing errors on the
ability of self-adaptive systems to adapt well. Additional work is needed to understand types and
sources of errors and uncertainties that can occur in self-adaptive systems and understand the effect of
such errors and uncertainties on the quality of the adaptation decisions that can be reached, and
determine ways to ameliorate the effect of such errors and uncertainties.

Errors and uncertainty can creep into a survivable system from several sources (discussed in more
detail below):

• module and physical resource specifications,

• sensed state and events,

• assumptions about future behavior,

• anomalies due to distributed models and decision making, and

5.2.1. Specification Errors

A survivable system requires specifications of a variety of things in order to be able to construct a
robust configuration and correctly recover from failures. Errors in the specifications can cause
undesirable behavior. Specification vulnerabilities arise from:

• Invalid capability advertisements and requirement specifications. Self-adaptive systems
assume that the capabilities of functional modules and the resources they need to provide that
functionality can be known to the processes making adaptation decisions. If these are
unknown it will be impossible to physically instantiate functional units or connect them to
other functionality they need. If the information is incorrect, invalid configurations are likely
to result. The obvious way to obtain such information is by developer written specifications
that are either stored in a repository somewhere or available by introspection from the
components themselves. It is also theoretically possible to generate at least some of these
specifications from the design information produced during module development, although
this is definitely an open research area. It is not clear how to deal with errors of this type
other than to have some sort of feedback mechanism to flag potential errors when they are
discovered. For our purposes, we assume that these specifications exist and are accurate.

• Incompatible schemata. If the specifications described above come from many sources as
will likely be the case in open systems, there is a danger that it will be impossible to
accurately match requirements with capabilities. Schema incompatibility is a well known
problem that we are not attempting to solve.

• Imprecise specifications. The amount of information in capability and requirements
specifications needs to be bounded to make their production and management tractable. A
danger is that if specifications are not defined in enough level of detail it will be impossible to
determine whether matching can be done. An analysis of the appropriate level of detail, while
outside our scope, is important.

156

5.2.2. Sensing Errors

The state of the adapting system is dynamic and must be monitored. Both ^^J^^
the system (e.g., current loading) and exceptional events (e.g., failures) must be tracked. There are
many ways in which this sensing can be done, but all are subject to error.

. Late detection of failures. Failures are generally not detected until after they have occurred,
although in some cases symptoms of impending failure may be detected. The time lag
between failure and detection may be significant depending on the type of failure and he
sophistication of the detectors. Late detection may cause the system to be in a failed state for
a significant time before adaptation takes place. If detection delays are significant, the
adaptation mechanisms may be forced to construct conservative configurations to reduce he
risk that total failure will occur faster than it can be repaired; this will consume additional
resources. Estimating a bound on such delays should provide information about how much
redundancy is needed to compensate.

. Misclassified failures. Failure detectors map observed symptoms of errors to the errors
themselves The more precise this determination can be, the better the adaptation to the
Se can be. For example, if it is known that a particular host failed, a ™°™^fXZ
would be to migrate functionality to an identical host. However, if it were known that the host
failed because of a viral attack that was specific to that class of host, such a migration would
not be a good adaptation strategy. Mapping symptoms to specific failures is far from a perfect
process. Assuming that failures are detected at all, they may be misclassified (e.g.,
determined to be viral attack when in fact it was a disk sector error) or classified too broadly
(e K host X failed without giving a reason). It is possible, in principle to trade off between
these two kinds of misclassification, accepting broader error determinations in an attempt to
ensure that they are correct. It appears useful for the adaptivity decision mechanisms to know
the bias of the detectors and classifiers and possibly be able to tune them.

. Sampling errors. Performance and loading information probably cannot be continuously
sampled, since to do so would pose unacceptable overhead. Instead it is sampled; these
samples are of course susceptible to sampling error. The decision process should have insight
into the accuracy and timeliness of such samples. This would be useful in the following
example. A reasonable strategy when adapting to meet a quality of service goal is to
configure in a way that might be sub-optimal, but is less likely to have performance outside
the desired range To do this, it is necessary to bound the probability that performance will
fall outside the desired range; this is function of both the variability in the performance of the
resource and the uncertainty with which its performance has been measured.

5.2.3. Uncertainty in Assumptions About Future Behavior

When adaptations are performed, it is useful to consider not just the present configuration that will
ZX outPalso how that configuration is likely to behave in the future based on some expecttbon.of
fu u e events. If a system is adapting to make a particular data source more robust by reptemg it,
the desirable number of replicas certainly depends on whether they are being placed on Tandem
Non-Stop machines or on Windows NT machines.

157

These estimates of future events are "uncertain" in the sense that it is impossible to objectively
determine some truth against which the estimate can be gauged. Examples of the kinds of estimation
uncertainty to which this portion of the model is susceptible are:

• Uncertainty about threat probabilities. To avoid adapting into a configuration that is
either too brittle or that wastes resources, it is useful to know what kinds of things can go
wrong and how likely they are. This is termed a threat model and describes both intentional
attacks and accidental failures. Some threats are reasonably well understood statistically and
can probably be modeled rather accurately; failure rates for hardware are examples of this.
Infrequently manifested physical threats such as fires are more problematic; their infrequency
makes it hard to accurately quantify their severity. Even worse are intentional attacks whose
occurrence is at the whim of an attacker who can (attempt to) mount them at times to be most
disruptive; gathering statistics on these will be extremely difficult. For such attacks, it is not
even clear that probabilities are the best way to describe their severity or frequency. Even if
an appropriate language can be determined, it is not clear how to estimate the severity of a
threat that can be imposed or withheld at will.

• Failure to correlate failures. Failures and attacks obviously correlate as discussed above.
However, because of the difficulty of diagnosing the root causes of failures, it is possible that
resource failures that result from the same vulnerability are ascribed to different causes.
Conversely, it is possible that independent failures are wrongly ascribed to a common cause.
At issue are how to measure or estimate such correlation and the effect of incorrect estimates.

• Correlated attacks. It is also possible that the occurrence of certain kinds of attacks may be
an indicator that other attacks are impending and should be guarded against by an adaptation.
For example, if the number of attacks against particular parts of the system increase, it might
be reasonable to assume that other similar parts of the system might be attacked also, or that
other kinds of attacks might be mounted against the components already under attack.

• Time-varying threat probabilities. The severity of threats can be situational or can change
over time. Assuming a static threat model is unreasonable, but mechanisms to evolve the
model need to be evaluated. A related issue is how to model and assess attacks that become
more likely to succeed over time. Password guessing is a trivial example of such an attack. If
it were known how to handle such kinds of attacks it might be possible to "preemptively"
adapt the system before it succumbed.

5.2.4. Errors Due to Distributed Models and Decision Making

Errors or inconsistencies can introduced by the distributed nature of self-adaptive, survivable
systems. The decision process and model must both be highly distributed. The distributed model
cannot be kept synchronous, since such a transactional model of data management would form a
choke point. The following kinds of inconsistencies may occur in a distributed environment.

• Inconsistencies due to propagation delays. Adaptation decisions will be made with
different, possibly conflicting models due to delays in the propagation of sensed information.
If model consistency is required for a particular decision, it would be useful to bound how

158

long information takes to propagate.

Inconsistencies due to variable levels of model detail. It is unlikely that all model detail
will propagate everywhere, even given arbitrary time. Localization of adaptation decisions
and local control of resources (I don't get to use your computer without your permission) will
tend to cause local parts of the system to be modeled at greater detail than remote parts of the
system Decisions made based on these differing views may be inconsistent. It would be
useful to know in what ways and to develop strategies to have adaptation decisions made
using the best available model.

Inconsistent adaptation decisions. Two parts of the system may choose to independently
adapt in conflicting ways. This is sometimes called "The Gift of the Magi Problem" in game
theory, after the mutually detrimental behavior exhibited in the O. Henry story.

'U.S. GOVERNMENT PRINTING OFFICE: .999-510-079-8.213

159

n

DISTRIBUTION LIST

addresses number
of copies

AFRL/IFGA
ATTN: PATRICK HURLEY
525 BROOKS ROAD
ROME, NEW YORK 13441-4505

03JECT SERVICES AND CONSULTANT, INC
6111 8AYW00D AVENUE
BALTIMORE, MD 21209-3803

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT. 8ELVOIR, VA 22060-6218

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LOR, 2950 P.STREET
AREA S, BLDG 642
WRIGHT-PATTERSON AFB OH 45433-7765

AFRL/MLME
2977 P STREET, STE 6
WRIGHT-PATTERSON AFB OH 45433-7739

DL-1

AFRL/HESC-TDC
2698 G STREET, 8LQG 190
WRIGHT-PATTERSON AFß OH 45433-7604

ATTN: SMDC IM PL
US ARMY SPACE £ MISSILE DEF CMD
P.O. BOX 1500
HUNTSVILLE AL 35807-3801

TECHNICAL LIBRARY D0274<PL-TS)
SPAWARSYSCEN
53560 HULL ST.
SAN DIEGO CA 92152-5001

COMMANDER, CODE 4TL00GD
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

CDR, US ARMY AVIATION £ MISSILE CMO
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-OB-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: D»S0RAH HART
AVIATION BRANCH SVC 122.10
FOB10A, RM 931
800 INDEPENDENCE AVE, S«
WASHINGTON DC 20591

AFIWC/MSY
102 HALL SLVO, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KARDLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

DL-2

USAF/AIR FORCE RESEARCH LABORATORY
AFPL/VS0SACLI3RARY-3LDG 1103)
5 WRIGHT DRIVE
HANSCOM AFB MA 01731-3004

ATTN: EILEEN LADUKE/D46Ö
MITRE CORPORATION
202 3URLINGTÜN RD
BEDFORD MA 01730

OUSO(P)/OTSA/DUTO
ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

OL-3

